Skip to main content
Log in

An \(h\)\(p\) Version of the Continuous Petrov–Galerkin Finite Element Method for Nonlinear Volterra Integro-Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present an \(h\)\(p\) version of the continuous Petrov–Galerkin finite element method for nonlinear Volterra integro-differential equations. We derive a priori error bounds in the \(L^2\)- and \(H^1\)-norm that are explicit in the time steps, the approximation orders, and the regularity of the exact solution. Numerical experiments are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Brunner, H.: Implicit Runge–Kutta methods of optimal order for Volterra integro-differential equations. Math. Comput. 42, 95–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunner, H., Schötzau, D.: \(hp\)-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations, CWI Monographs 3. North-Holland, Amsterdam (1986)

    Google Scholar 

  6. Chen, Y.P., Li, X.J., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31, 47–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demkowicz, L., Oden, J.T.: An adaptive characteristic Petrov–Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. J. Comput. Phys. 67, 188–213 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fakhar-Izadi, F., Dehghan, M.: The spectral methods for parabolic Volterra integro-differential equations. J. Comput. Appl. Math. 235, 4032–4046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griffiths, D.F., Lorenz, J.: An analysis of the Petrov–Galerkin finite element method. Comput. Methods Appl. Mech. Eng. 14, 39–64 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, B.Q.: The \(p\) and h-p Finite Element Analysis: Theory, Algorithm and Computation, Lecture Notes, Department of Mathematics. University of Manitoba, Canada (2004)

  11. Hu, Q.Y.: Stieltjes derivatives and \(\beta \)-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J. Numer. Anal. 33, 208–220 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Q.Y.: Geometric meshes and their application to Volterra integro-differential equations with singularities. IMA J. Numer. Anal. 18, 151–164 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, C., Tang, T., Zhang, Z.M.: Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions. J. Comput. Math. 29, 698–719 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, Y.J., Ma, J.T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X.J., Tang, T., Xu, C.J.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51, 1735–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, T., Lin, Y.P., Luo, P., Rao, M., Zhang, S.H.: Petrov-Galerkin methods for nonlinear Volterra integro-differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B 8, 405–426 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Lin, T., Lin, Y.P., Rao, M., Zhang, S.H.: Petrov–Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38, 937–963 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mustapha, K.: A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comput. 82, 1987–2005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An \(hp\)-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwab, C.: p- and hp- Finite Element Methods. Oxford University Press, New York (1998)

  21. Shen, J., Wang, L.L.: Legendre and Chebyshev dual-Petrov–Galerkin methods for hyperbolic equations. Comput. Methods Appl. Mech. Eng. 196, 3785–3797 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao, X., Xie, Z.Q., Zhou, X.J.: Spectral Petrov–Galerkin methods for the second kind Volterra type integro-differential equations. Numer. Math. Theory Methods Appl. 4, 216–236 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Wei, Y.X., Chen, Y.P.: Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions. Adv. Appl. Math. Mech. 4, 1–20 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Wihler, T.P.: An a priori error analysis of the \(hp\)-version of the continuous Galerkin FEM for nonlinear initial value problems. J. Sci. Comput. 25, 523–549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, D.: Stability of the difference type methods for linear Volterra equations in Hilbert spaces. Numer. Math. 109, 571–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, D.: Uniform \(l^1\) behaviour in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I: stability. IMA J. Numer. Anal. 31, 1154–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yi, L.J., Guo, B.Q.: An \(h\)\(p\) Petrov–Galerkin finite element method for linear Volterra integro-differential equations. Sci. China Math. 57, 2285–2300 (2014)

  30. Yuan, W., Tang, T.: The numerical analysis of implicit Runge–Kutta methods for a certain nonlinear integro-differential equation. Math. Comput. 54, 155–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, S.H., Lin, T., Lin, Y.P., Rao, M.: Extrapolation and a-posteriori error estimators of Petrov–Galerkin methods for non-linear Volterra integro-differential equations. J. Comput. Math. 19, 407–422 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referee for many constructive and valuable suggestions, which considerably improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Yi.

Additional information

Dedicated to Professor Benqi Guo on the Occasion of his 70th Birthday.

The work of this author is supported in part by the NSF of China (Nos. 11301343 and 11226330), the Research Fund for the Doctoral Program of Higher Education of China (No. 20113127120002), the Research Fund for Young Teachers Program in Shanghai (No. shsf018), and the Fund for E-institute of Shanghai Universities (No. E03004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L. An \(h\)\(p\) Version of the Continuous Petrov–Galerkin Finite Element Method for Nonlinear Volterra Integro-Differential Equations. J Sci Comput 65, 715–734 (2015). https://doi.org/10.1007/s10915-015-9983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9983-9

Keywords

Mathematics Subject Classification