Skip to main content
Log in

Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2016

Abstract

This paper presents a boundary integral method with the adjoint generalized Neumann kernel for conformal mapping of a bounded multiply connected region onto a disk with spiral slits region \(\varOmega _1\). This extends the methods that have recently been given for mappings onto annulus with spiral slits region \(\varOmega _2\), spiral slits region \(\varOmega _3\), and straight slits region \(\varOmega _4\) but with different right-hand sides. This paper also presents a fast implementation of the boundary integral equation method for computing numerical conformal mapping of bounded multiply connected region onto all four regions \(\varOmega _1\), \(\varOmega _2\), \(\varOmega _3\), and \(\varOmega _4\) as well as their inverses. The integral equations are solved numerically using combination of Nyström method, GMRES method, and fast multipole method (FMM). The complexity of this new algorithm is \(O((m + 1)n)\), where \(m+1\) is the multiplicity of the multiply connected region and n is the number of nodes on each boundary component. Previous algorithms require \(O((m+1)^3 n^3)\) operations. The algorithm is tested on several test regions with complex geometries and high connectivities. The numerical results illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations. Society for Industry and Applied Mathematics, Philadephia (1976)

    MATH  Google Scholar 

  3. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  4. Greengard, L., Gimbutas, Z.: FMMLIB2D, a MATLAB Toolbox for Fast Multipole Method in Two Dimensions, Version 1.2. http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html (2012)

  5. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227(5), 2899–2921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Koebe, P.: Abhandlungen zur Theorie der konfermen Abbildung. IV. Abbildung mehrfach zusammenhängender schlicter Bereiche auf Schlitzcereiche (in German). Acta Math. 41, 305–344 (1916)

    Article  MathSciNet  Google Scholar 

  8. Nasser, M.M.S., Murid, A.H.M., Zamzamir, Z.: A boundary integral method for the Riemann–Hilbert problem in domains with corners. Complex Var. Eliptic Equ. 53(2), 989–1008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nasser, M.M.S.: A boundary integral equation for conformal mapping of bounded multiply connected regions. Comput. Methods Func. Theory 9(1), 127–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nasser, M.M.S.: Numerical conformal mapping via boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31, 1695–1715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nasser, M.M.S., Murid, A.H.M., Ismail, M., Alejaily, E.M.A.: Boundary integral equation with the generalized Neumann kernel for Laplace’s equation in multiply connected regions. Appl. Math. Comput. 217, 4710–4727 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe’s canonical slit domains. J. Math. Anal. Appl. 382, 47–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nasser, M.M.S., Al-Shihri, Fayzah A.A.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nehari, Z.: Conformal Mapping. Dover Publication, New York (1952)

    MATH  Google Scholar 

  15. Sangawi, A.W.K., Murid, A.H.M., Nasser, M.M.S.: Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits. Appl. Math. Comput. 218(5), 2055–2068 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Sangawi, A.W.K., Murid, A.H.M.: Annulus with spiral sSlits map and its inverse of bounded multiply connected regions. IJSER 4(10), 1447–1454 (2013)

    Google Scholar 

  17. Sangawi, A.W.K.: Spiral slits map and its inverse of bounded multiply connected regions. Appl. Math. Comput. 228, 520–530 (2014)

    MathSciNet  Google Scholar 

  18. Sangawi, A.W.K.: Straight slits map and its inverse of bounded multiply connected regions. Adv. Comput. Math. (2014). doi:10.1007/s10444-014-9368-x

  19. Wegmann, R., Nasser, M.M.S.: The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions. J. Comput. Appl. Math. 214, 36–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wen, G.C.: Conformal Mapping and Boundary Value problems, English translation of Chinese edition 1984, American mathematical Society, providence (1992)

  21. Yunus, A.A.M., Murid, A.H.M., Nasser, M.M.S.: Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 470(2162), 20130514 (2014). doi:10.1098/rspa.2013.0514

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Malaysian Ministry of Higher Education (MOHE) through the Research Management Centre (RMC), Universiti Teknologi Malaysia, UTM-CIAM (Vote: R.J130000.7809.4F637), and the Ministry of Higher Education through Department of Mathematics School of Science, University of Sulaimani. These supports are gratefully acknowledged. We wish to thank an anonymous referee for valuable comments and suggestions on the manuscript which improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali W. K. Sangawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangawi, A.W.K., Murid, A.H.M. & Wei, L.K. Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions. J Sci Comput 68, 1124–1141 (2016). https://doi.org/10.1007/s10915-016-0171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0171-3

Keywords

Mathematics Subject Classifications

Navigation