Skip to main content
Log in

An Integrated Linear Reconstruction for Finite Volume Scheme on Unstructured Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 13 April 2016

Abstract

Linear reconstruction based on local cell-averaged values is the most commonly adopted technique to achieve a second-order accuracy when one uses the finite volume scheme on unstructured grids. For solutions with discontinuities appearing in such as conservation laws, a certain limiter has to be applied to the predicted gradient to prevent numerical oscillations. We propose in this paper a new formulation for linear reconstruction on unstructured grids, which integrates the prediction of the gradient and the limiter together. By solving on each cell a tiny linear programming problem without any parameters, the gradient is directly obtained which satisfies the monotonicity condition. It can be shown that the resulting numerical scheme with our new method fulfils a discrete maximum principle with fair relaxed geometric constraints on grids. Numerical results demonstrate that our method achieves satisfactory numerical accuracy with theoretical guarantee of local discrete maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  2. Goodman, J.B., LeVeque, R.J.: On the accuracy of stable schemes for 2d scalar conversation laws. Math. Comput. 45(171), 15–21 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Spekreijse, S.: Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Math. Comput. 49(179), 135–155 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. In: 27th AIAA Aerospace Sciences Meeting, vol. 366, Jan 1989

  5. Durlofsky, L.J., Engquist, B., Osher, S.: Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98(1), 64–73 (1992)

    Article  MATH  Google Scholar 

  6. Batten, P., Lambert, C., Causon, D.M.: Positively conservative high-resolution convection schemes for unstructured elements. Int. J. Numer. Methods Eng. 39(11), 1821–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, X.D.: A maximum principle satisfying modification of triangle based adapative stencils for the solution of scalar hyperbolic conservation laws. SIAM J. Numer. Anal. 30(3), 701–716 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hubbard, M.E.: Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155(1), 54–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Park, J.S., Yoon, S.H., Kim, C.: Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. J. Comput. Phys. 229(3), 788–812 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barth, T.J., Frederickson, P.O.: Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. In: 28th AIAA Aerospace Sciences Meeting, vol. 13, Jan 1990

  11. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y., Zhang, Y.T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54(2–3), 603–621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jawahar, P., Kamath, H.: A high-resolution procedure for Euler and Navier–Stokes computations on unstructured grids. J. Comput. Phys. 164(1), 165–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, W., Ren, Y.X., Lei, G., Luo, H.: The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. J. Comput. Phys. 230(21), 7775–7795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berger, M., Aftosmis, M.J., Murman, S.M.: Analysis of slope limiters on irregular grids. In: 43rd AIAA Aerospace Sciences Meeting, vol. 490, May 2005

  18. Buffard, T., Clain, S.: Monoslope and multislope MUSCL methods for unstructured meshes. J. Comput. Phys. 229(10), 3745–3776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. May, S., Berger, M.: Two-dimensional slope limiters for finite volume schemes on non-coordinate-aligned meshes. SIAM J. Sci. Comput. 35(5), A2163–A2187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barth, T.J., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Encyclopedia of Computational Mechanics. Citeseer, (2004)

  22. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial supports provided by the National Natural Science Foundation of China (Grant Numbers 91330205 and 11325102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Li.

Appendix: All-Inequality Simplex Method

Appendix: All-Inequality Simplex Method

Consider a general LP problem in the all-equality form (20). The Lagrangian of (20) is

$$\begin{aligned} L({{\varvec{x}}},\varvec{\lambda })={{\varvec{c}}}^\top {{\varvec{x}}}+ \varvec{\lambda }^\top ({{\varvec{b}}}-{{\varvec{A}}} {\mathbf {x}}) ={{\varvec{b}}}^\top \varvec{\lambda }+{{\varvec{x}}}^\top ({{\varvec{c}}}-{{\varvec{A}}}^\top \varvec{\lambda }), \end{aligned}$$

and the dual problem of (20) is

$$\begin{aligned} \text {min } {{\varvec{b}}}^\top \varvec{\lambda }\quad \text {s.t. } {{\varvec{A}}}^\top \varvec{\lambda }={{\varvec{c}}}\text { and } \varvec{\lambda }\ge 0. \end{aligned}$$
(39)

By the weak duality theorem, one knows that if \({{\varvec{x}}}\) is feasible for (20) and \(\varvec{\lambda }\) is feasible for (39), then

$$\begin{aligned} {{\varvec{c}}}^\top {{\varvec{x}}}\le {{\varvec{b}}}^\top \varvec{\lambda }. \end{aligned}$$

Moreover, \({{\varvec{x}}}\) is optimal for (20) provided that the equality above holds. Now we start from a vertex, and go from vertex to vertex until this equality holds. The iteration takes the form

$$\begin{aligned} {{\varvec{x}}}:={{\varvec{x}}}+\alpha {{\varvec{p}}}, \end{aligned}$$

where the step length \(\alpha \) and the searching direction \({{\varvec{p}}}\) need to be determined at each step.

Denote by \({{\varvec{a}}}_i^\top \) the i-th row of \({{\varvec{A}}}\). The active matrix \({{\varvec{M}}}\) consists of d rows of the matrix \({{\varvec{A}}}\), indicating that corresponding constraints at the current searching point \({{\varvec{x}}}\) are active. The active matrix \({{\varvec{M}}}\) needs to be non-singular.

Suppose that at a given step the active Lagrange multipliers \(\tilde{\varvec{\lambda }}\) satisfy

$$\begin{aligned} {{\varvec{M}}}^\top \tilde{\varvec{\lambda }}={\varvec{c}} \text { and }\tilde{\varvec{\lambda }}\ge 0, \end{aligned}$$

then \({{\varvec{c}}}^\top {{\varvec{x}}}={{\varvec{b}}}^\top \varvec{\lambda }\) with all the inactive Lagrange multipliers vanishing, and we end up with an optimal point \({{\varvec{x}}}\). Otherwise, we remove the constraint j such that the component \(\lambda _j<0\) and determine the searching direction \({\varvec{p}}\) through

$$\begin{aligned} {{\varvec{M}}}{{\mathbf {p}}}=-{{\varvec{e}}}_j, \end{aligned}$$

where \({{\varvec{e}}}_j\) is the j-th coordinate vector.

Assuming that the point in the next step \({{\varvec{x}}}+\alpha _i{{\varvec{p}}}\) satisfies the constraint i, then we have

$$\begin{aligned} {{\varvec{a}}}_i^\top ({{\varvec{x}}}+\alpha _i{{\varvec{p}}})=b_i, \end{aligned}$$

which yields the step length with regard to i to be

$$\begin{aligned} \alpha _i=\dfrac{b_i-{{\varvec{a}}}_i^\top {{\varvec{x}}}}{{{\varvec{a}}}_i^\top {{\varvec{p}}}}. \end{aligned}$$

Since \(b_i-{{\varvec{a}}}_i^\top {{\varvec{x}}}\ge 0\), it suffices to consider those constraints satisfying \({{\varvec{a}}}_i^\top {{\varvec{p}}}>0\). The actual step length \(\alpha \) is then taken as the minimum of all the estimated step lengths

$$\begin{aligned} \alpha =\min _{i\in D} \{\alpha _i\}. \end{aligned}$$

Finally we choose an index k satisfying \(\alpha _k=\alpha \) and update the active matrix by replacing j-th row of \({{\varvec{M}}}\) with k-th row of \({{\varvec{A}}}\). So far we finish one loop. The whole algorithm is illustrated in Algorithm 1. Note that we use the negation of both the searching direction \({{\varvec{p}}}\) and step length \(\alpha \).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, R. An Integrated Linear Reconstruction for Finite Volume Scheme on Unstructured Grids. J Sci Comput 68, 1172–1197 (2016). https://doi.org/10.1007/s10915-016-0173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0173-1

Keywords

Navigation