Skip to main content

\(L^p\) Error Estimates of Two-Grid Method for Miscible Displacement Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned about the \(L^p\) error analysis of two-grid method for incompressible miscible displacement in porous medium. A characteristics finite element method is presented for the concentration equation to handle the convection part, and standard mixed finite element is used for the pressure equation. Mixed finite element method has an advantage of approximating the unknown variable and its diffusive flux across grid-cell interfaces simultaneously, which has been proven to be an effective numerical method for solving fluid problems. Moreover, we linearize the equations based on the Newton iteration method, then, two-grid algorithm is considered in this full discrete scheme problems. It shown that coarse space can be extremely coarse and we achieve asymptotically optimal approximation. Numerical experiments are presented finally to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Philadelphia (2000)

    Google Scholar 

  2. Russell, T.F.L.: Finite elements with characteristics for two-component incompressible miscible displacement. In: Proceedings of the 6th SPE Symposium on Reservoir Simulation, pp. 123–135. New Orleans (1982)

  3. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17(1), 17–33 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Chen, Z.X., Ewing, R.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30(2), 431–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fanchi, J.R.: Principles of Applied Reservoir Simulation. Gulf Professional Publishing, Houston (2005)

    Google Scholar 

  6. Chen, Z.X.: Reservoir simulation: mathematical techniques in oil recovery. CBMS-NSF Reg. Conf. Ser. Appl. Math. 77, SIAM, Philadelphia (2007)

  7. Todd, M.R., O’dell, P.M., Hirasaki, G.J.: Methods for increased accuracy in numerical reservoir simulators. Soc. Pet. Eng. J. 12(06), 515–530 (1972)

    Article  Google Scholar 

  8. Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit, higher order godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys. 74(1), 1–24 (1988)

    Article  MATH  Google Scholar 

  9. Peaceman, D.W.: Streamline diffusion methods for problems in fluid mechanics. In: Finite Element in Fluids VI. Wiley, New York (1986)

  10. Yang, D.P.: Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems. Math. Comput. 69(231), 929–963 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An eulerian-lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  13. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hackbusch, W.: Multi-Grid Methods and Applications. Springer Series in Computational Mathematics, vol 4. Springer, New York (1985)

  15. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia, PA (2000)

  16. Xu, J.C.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, J.C.: Two-grid discretization techniques for linear and non-linear pdes. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edwards, M.G., Rogers, C.F.: Multigrid and renormalization for reservoir simulation. In: Hemker, P.W., Wesseling, P. (eds.) Proceedings of the Fourth European Multigrid Conference, Amsterdam, 1993 (Birkhäuser, Basel, 1994), pp. 189–200

  19. Audigane, P., Blunt, M.J.: Dual mesh method for upscaling in waterflood simulation. Transp. Porous Media 55(1), 71–89 (2004)

    Article  Google Scholar 

  20. Audigane, P., Blunt, M.J.: Dual mesh method in upscaling. In: SPE Reservoir Simulation Symposium (2003)

  21. Verdiere, S., Guérillot, D., Thomas, J.M.: Dual mesh method for multiphase flows in heterogeneous porous media. In: 5th European Conference on the Mathematics of Oil Recovery (1996)

  22. Chen, Y.P., Huang, Y.Q., Yu, D.H.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57(2), 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y.P., Liu, H.W., Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69(2), 408–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, Y.P., Luan, P., Lu, Z.L.: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods. Adv. Appl. Math. Mech. 1(6), 830–844 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Chen, L.P., Chen, Y.P.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49(3), 383–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, L.P., Chen, Y.P.: Two-grid discretization scheme for nonlinear reaction diffusion equation by mixed finite element methods. Adv. Appl. Math. Mech. 6(02), 203–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32(2), 404–424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34(2), 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Edwards, M.G., Pal, M.: Positive-definite q-families of continuous subcell darcy-flux CVD (MPFA) finite-volume schemes and the mixed finite element method. Int. J. Numer. Methods Fluids 57(4), 355–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rui, H.X., Tabata, M.: A mass-conservative characteristic finite element scheme for convection-diffusion problems. J. Sci. Comput. 43(3), 416–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Deng, Q.L., Ginting, V.: Construction of locally conservative fluxes for the SUPG method. Numer. Methods Partial Differ. Equ. 31(6), 1971–1994 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, Y.R.: Characteristic finite difference methods for positive semidefinite problem of two phase miscible flow in porous media. Syst. Sci. Math. Sci. 12, 299–306 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Sun, T.J., Yuan, Y.R.: An approximation of incompressiblle miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element methods. J. Comput. Appl. Math. 228, 391–411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1), 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raviart, J.M., Thomas, P.A.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, vol 606. Springer, New York (1977)

  36. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO Anal. Numer. 8(2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Susanne, S.C., Brenner, L.R.: The Mathematical Theory of Finite Element Methods,Second edition. Texts in Applied Mathematics. Springer, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

This work is supported by National Science Foundation of China (91430104, 11271145).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zeng, J. & Zhou, J. \(L^p\) Error Estimates of Two-Grid Method for Miscible Displacement Problem. J Sci Comput 69, 28–51 (2016). https://doi.org/10.1007/s10915-016-0187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0187-8

Keywords