Skip to main content
Log in

Minimizing Eigenvalues for Inhomogeneous Rods and Plates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Optimizing eigenvalues of biharmonic equations appears in the frequency control based on density distribution of composite rods and thin plates with clamped or simply supported boundary conditions. In this paper, we use a rearrangement algorithm to find the optimal density distribution which minimizes a specific eigenvalue. We answer the open question regarding optimal density configurations to minimize k-th eigenvalue for clamped rods and analytically show that the optimal configurations are distinct for clamped rods and simply supported rods. Many numerical simulations in both one and two dimensions demonstrate the robustness and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anedda, C., Cuccu, F., Porru, G.: Minimization of the first eigenvalue in problems involving the bi-Laplacian. Revista de Matemática: Teoría y Aplicaciones 16(1), 127–136 (2009)

    Google Scholar 

  2. Ashbaugh, M.S., Benguria, R.D., et al.: On rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78(1), 1–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks, D.O.: Bounds for the eigenvalues of some vibrating systems. Pac. J. Math. 10(2), 439–474 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, D.O.: Bounds for the eigenvalues of nonhomogeneous hinged vibrating rods. J. Math. Mech. 16, 949–966 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Beesack, P.R.: Isoperimetric inequalities for the nonhomogeneous clamped rod and plate. J. Math. Mech. 8, 471–482 (1959)

    MathSciNet  MATH  Google Scholar 

  6. Belgacem, F.: Elliptic Boundary Value Problems with Indefinite Weights, Variational Formulations of the Principal Eigenvalue, and Applications, vol. 368. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  7. Bendali, A., Fares, M., Tizaoui, A., Tordeux, S.: Matched asymptotic expansions of the eigenvalues of a 3-d boundary-value problem relative to two cavities linked by a hole of small size. CICP (2012)

  8. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63(2), 97–107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, B.M. , Davies, E.B., Jimack, P.K., Mihajlovi’c, M.D.: On the Accurate Finite Element Solution of a Class of Fourth Order Eigenvalue Problems. arXiv preprint arXiv:math/9905038 (1999)

  10. Buoso, D., Lamberti, P.D.: Shape deformation for vibrating hinged plates. Math. Methods. Appl. Sci. 37(2), 237–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cadeddu, L., Farina, M.A., Porru, G.: Optimization of the principal eigenvalue under mixed boundary condition. Electron. J. Differ. Equ. 2014(154), 1–17 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Chanillo, S., Grieser, D., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214(2), 315–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Diest, K., Kao, C.-Y., Marthaler, D.E., Sweatlock, L.A., Osher, S.: Gradient based optimization methods for metamaterial design. In: Diest, K. (ed.) Numerical Methods for Metamaterial Design, pp 175–204. Springer, Netherlands (2013)

  14. Coffman, C.V., Duffin, R.J.: On the fundamental eigenfunctions of a clamped punctured disk. Adv. Appl. Math. 13(2), 142–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cox, S.J.: The two phase drum with the deepest bass note. Jpn. J. Ind. Appl. Math. 8(3), 345–355 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cox, S.J., Dobson, D.C.: Band structure optimization of two-dimensional photonic crystals in H-polarization. J. Comput. Phys. 158(2), 214–224 (2000)

    Article  MATH  Google Scholar 

  17. Cuccu, F., Emamizadeh, B., Porru, G.: Optimization of the first eigenvalue in problems involving the bi-Laplacian. Proc. Am. Math. Soc. 137(5), 1677–1687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuccu, F., Porru, G.: Maximization of the first eigenvalue in problems involving the bi-Laplacian. Nonlinear Anal. Theory Methods Appl. 71(12), e800–e809 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dobson, D.C., Cox, S.J.: Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 59(6), 2108–2120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, L., Kao, C.-Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225(1), 891–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Hintermüller, M., Kao, C.-Y., Laurain, A.: Principal eigenvalue minimization for an elliptic problem with indefinite weight and robin boundary conditions. Appl. Math. Optim. 65(1), 111–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hunter, J.K.: Asymptotic Analysis and Singular Perturbation Theory. Department of Mathematics, University of California at Davis (2004)

  24. Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng 5(2), 315–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kao, C.-Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B Lasers Opt. 81(2), 235–244 (2005)

    Article  Google Scholar 

  26. Kao, C.-Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45(4), 412–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kao, C.-Y., Shu, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54(2–3), 492–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karabash, I.M.: Nonlinear eigenvalue problem for optimal resonances in optical cavities. Math. Model. Nat. Phenom. 8(01), 143–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krein, M.G.: On Certain Problems on the Maximum and Minimum of Characteristic Values and on the Lyapunov Zones of Stability. American Mathematical Society Translations. American Mathematical Society (1955)

  30. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. SIAM, Philadelphia, PA (1998)

  31. Lin, J., Santosa, F.: Resonances of a finite one-dimensional photonic crystal with a defect. SIAM J. Appl. Math. 73(2), 1002–1019 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23(3), 275–292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maksimović, M., Manfred Hammer, E.W.C., van Groesen, B.: Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes. Opt. Eng. 47(11), 114601–114601 (2008)

    Article  Google Scholar 

  34. Men, H., Lee, K.Y.K., Freund, R.M., Peraire, J., Johnson, S.G.: Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt. Express 22(19), 22632–22648 (2014)

    Article  Google Scholar 

  35. Men, H., Nguyen, N.-C., Freund, R.M., Lim, K.-M., Parrilo, P.A., Peraire, J.: Design of photonic crystals with multiple and combined band gaps. Phys. Rev. E 83(4), 046703 (2011)

    Article  Google Scholar 

  36. Mohammadi, S.A., Bahrami, F.: Extremal principal eigenvalue of the bi-Laplacian operator. Appl. Math. Model. 40(3), 2291–2300 (2016)

    Article  MathSciNet  Google Scholar 

  37. Mohr, E.: Über die rayleighsche vermutung: Unter allen platten von gegebener fläche und konstanter dichte und elastizität hat die kreisförmige den tiefsten grundton. Annali di matematica pura ed applicata 104(1), 85–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nadirashvili, N.S.: Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Ration. Mech. Anal. 129(1), 1–10 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Osher, S.J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171(1), 272–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Osting, B.: Bragg structure and the first spectral gap. Appl. Math. Lett. 25(11), 1926–1930 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rayleigh, J.W.S.: The Theory of Sound, vol. 1. McMillan, New York (1945)

    MATH  Google Scholar 

  42. Schwarz, B.: Some results on the frequencies of nonhomogeneous rods. J. Math. Anal. Appl. 5(2), 169–175 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sigmund, O., Hougaard, K.: Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100(15), 153904 (2008)

    Article  Google Scholar 

  44. Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign. Electron. J. Differ. Equ. Conf. 6, 285–296 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Szegö, G.: On membranes and plates. Proc. Natl. Acad. Sci. USA 36(3), 210 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  46. Talenti, G.: On the first eigenvalue of the clamped plate. Ann. Mat. 129(1), 265–280 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wayne, A.: Inequalities and inversions of order. Scr. Math. 12(2), 164–169 (1946)

    MathSciNet  Google Scholar 

  48. Yolcu, S.Y., Yolcu, T.: Estimates on the eigenvalues of the clamped plate problem on domains in Euclidean spaces. J. Math. Phys. 54(4), 043515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Yen Kao.

Additional information

Ching-Shan Chou: This author is supported by NSF DMS1253481, Chiu-Yen Kao: This author is partially supported by NSF DMS1318364.

Appendices

Appendix 1

In one dimension, for simplicity, we choose \(D=[-1,1]\), and define a uniform grid of points \(x_{i}=-1+ih\) where h is the mesh size, \(0\le i\le N\) and \(N=2/h.\) The discretized eigenfunction is denoted by U in the form of a column vector \(\left( U_{0},\ldots ,U_{N}\right) ^{T}\). We approximate the fourth order derivative at \(x_{i}\) by the central difference formula

$$\begin{aligned} U_{i}^{''''}\approx \frac{U_{i-2}-4U_{i-1}+6U_{i}-4U_{i+1} +U_{i+2}}{h^{4}}, \end{aligned}$$

for \(i=2,\cdots ,N-2\). To approximate the derivatives at \(x_{1}\) and \(x_{N-1}\), values at ghost points \(x_{-1}=-1-h\) and \(x_{N+1}=1+h\) are necessary and can be obtained by the given boundary conditions. If clamped boundary conditions are imposed, that is,

$$\begin{aligned} u(-1)=u(1)=u^{'}(-1)=u^{'}(1)=0, \end{aligned}$$

we choose \(U_{0}=U_{N}=0\) at two end points and \(U_{-1}=U_{1}\) and \(U_{N+1}=U_{N-1}\) at two ghost points. Thus

$$\begin{aligned} U_{1}^{''''}\approx \frac{7U_{1}-4U_{2}+U_{3}}{h^{4}}, \end{aligned}$$

and

$$\begin{aligned} U_{N-1}^{''''}\approx \frac{U_{N-3}-4U_{N-2}+7U_{N-1}}{h^{4}}. \end{aligned}$$

The hinged boundary conditions

$$\begin{aligned} u(-1)=u(1)=u^{''}(-1)=u^{''}(1)=0 \end{aligned}$$

lead to \(U_{0}=U_{N}=0\) at the boundaries, \(U_{-1}=2U_{0}-U_{1}\) and \(U_{N+1}=2U_{N}-U_{N-1}\) at two ghost points. Thus

$$\begin{aligned} U_{1}^{''''}\approx \frac{5U_{1}-4U_{2}+U_{3}}{h^{4}}, \end{aligned}$$

and

$$\begin{aligned} U_{N-1}^{''''}\approx \frac{U_{N-3}-4U_{N-2}+5U_{N-1}}{h^{4}}. \end{aligned}$$

Consequently, the matrix representing the biharmonic operator on \([-1,1]\) is formed by assigning the coefficients in the approximation formula of \(U_{i}^{''''}\) to the i-th row.

Appendix 2

In two-dimensional rectangle \(D=[-a,a]\times [-b,b]\), define a uniform grid of points \(x_{i,j}=(x_{1i},x_{2j})\) where \(x_{1i}=-a+ih_{1}, x_{2j}=-b+jh_{2}\) where \(h_{1}\) and \(h_{2}\) are mesh sizes in \(x_{1}\)- and \(x_{2}\)- directions, respectively. For simplicity, we assume that \(h_{1}=h_{2}=h\). Let \(\left( U_{i,j}\right) _{0\le i\le N,0\le j\le M}\) be the matrix of the discretized eigenfunction. The second order central difference scheme involving 13-point stencils is used to approximate the biharmonic operator

$$\begin{aligned} \Delta ^{2}U_{i,j}\approx \frac{1}{h^{4}}\left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} &{} &{} +U_{i,j+2}\\ &{} +2U_{i-1,j+1} &{} -8U_{i,j+1} &{} +2U_{i+1,j+1}\\ +U_{i-2,j} &{} -8U_{i-1,j} &{} +20U_{i,j} &{} -8U_{i+1,j} &{} U_{i+2,j}\\ &{} +2U_{i-1,j-1} &{} -8U_{i,j-1} &{} +2U_{i+1,j-1}\\ &{} &{} +U_{i,j-2} \end{array}\right] \end{aligned}$$

for \(2\le i\le N-2\), and \(2\le j\le M-2\). With clamped boundary conditions the biharmonic operator along \(i=1\) is approximated by

$$\begin{aligned} \Delta ^{2}U_{1,j}\approx \frac{1}{h^{4}}\left[ \begin{array}{l@{\quad }l@{\quad }l} +U_{1,j+2}\\ -8U_{1,j+1} &{} +2U_{2,j+1}\\ +21U_{1,j} &{} -8U_{2,j} &{} U_{3,j}\\ -8U_{1,j-1} &{} +2U_{2,j-1}\\ +U_{1,j-2} \end{array}\right] ,\quad 2\le j\le M-2, \end{aligned}$$

and

$$\begin{aligned} \Delta ^{2}U_{1,1}\approx \frac{1}{h^{4}}\left[ \begin{array}{l@{\quad }l@{\quad }l} +U_{1,3}\\ -8U_{1,2} &{} +2U_{2,2}\\ +22U_{1,1} &{} -8U_{2,1} &{} U_{3,1} \end{array}\right] . \end{aligned}$$

The approximating formulas along \(i=N-1, j=1\) or \(j=M-1\) can be derived similarly. All points at the boundaries are taken as zero, \(U_{0,j}=U_{N,j}=U_{i,0}=U_{i,M}=0.\) For the hinged boundary conditions, the discretization is almost the same, except the approximations for points near the boundaries (\(i=1\) or \(N-1, j=1\) or \(M-1\)). For example,

$$\begin{aligned} \Delta ^{2}U_{1,j}\approx \frac{1}{h^{4}}\left[ \begin{array}{l@{\quad }l@{\quad }l} +U_{1,j+2}\\ -8U_{1,j+1} &{} +2U_{2,j+1}\\ +19U_{1,j} &{} -8U_{2,j} &{} U_{3,j}\\ -8U_{1,j-1} &{} +2U_{2,j-1}\\ +U_{1,j-2} \end{array}\right] ,\quad 2\le j\le M-2, \end{aligned}$$

and

$$\begin{aligned} \Delta ^{2}U_{1,1}\approx \frac{1}{h^{4}}\left[ \begin{array}{l@{\quad }l@{\quad }l} +U_{1,3}\\ -8U_{1,2} &{} +2U_{2,2}\\ +18U_{1,1} &{} -8U_{2,1} &{} U_{3,1} \end{array}\right] . \end{aligned}$$

The discretization along the other sides can be obtained similarly. Each stencil approximating \(\Delta ^{2}U_{i,j}\) is assigned into a row to form the matrix of the discrete biharmonic operator. Therefore, the size of the matrix to approximate the biharmonic operator on a rectangle is \((N-1)(M-1)\times (N-1)(M-1)\).

Appendix 3

For the biharmonic eigenvalue problem on a circular or annular domain, we perform the numerical discretization after transforming the problem into the polar coordinates, and the harmonic operator in terms of \((r,\theta )\) is

$$\begin{aligned} \Delta u =\frac{\partial ^{2}u}{\partial r^{2}}+\frac{1}{r}\frac{\partial u}{\partial r}+\frac{1}{r^{2}}\frac{\partial ^{2}u}{\partial \theta ^{2}}. \end{aligned}$$

Assume the domain \(\Omega \) is a disc with radius one, denoted by D(0, 1). In polar coordinates \((r,\theta )\), the mesh is set to be \(r_{i}=\frac{2i-1}{2N+1}, \theta _{j}=\frac{2\pi j}{M}, i=1,2,\ldots ,N+1, j=1,2,\ldots ,M\) to avoid \(\left( 0,0\right) \). Suppose \(U_{(N+1)\times M}\) is the matrix of discretized eigenfunction, then

$$\begin{aligned} \Delta U_{ij}= & {} \left( \frac{(2N+1)^{2}}{4(2i-1)} +\frac{(2N+1)^{2}}{4}\right) U_{i+1,j}+\left( -\frac{(2N+1)^{2}}{4(2i-1)} +\frac{(2N+1)^{2}}{4}\right) U_{i-1,j}\\&+ \, \left( \frac{M(2N+1)}{2\pi (2i-1)}\right) ^{2} \left( U_{i,j+1}+U_{i,j-1}\right) -\left( \frac{(2N+1)^{2}}{2} +2\left( \frac{M(2N+1)}{2\pi (2i-1)}\right) ^{2}\right) U_{ij}. \end{aligned}$$

Near the center, the ghost point \(U_{0,j}\) satisfies

$$\begin{aligned} U_{0,j}=U_{1,j+\frac{M}{2}}. \end{aligned}$$

For clamped boundary conditions, we can define ghost points outside \(r=1\) as

$$\begin{aligned} U_{N+2,j}=U_{N,j}. \end{aligned}$$

The simply supported boundary conditions in terms of polar coordinates are written as

$$\begin{aligned} u = \frac{\partial ^{2}u}{\partial r^{2}}+\nu \left( \frac{1}{r^{2}}\frac{\partial ^{2}u}{\partial \theta ^{2}} +\frac{1}{r}\frac{\partial u}{\partial r}\right) =0, \end{aligned}$$

where \(\nu \) is a given constant. Thus we can define

$$\begin{aligned} U_{N+2,j} = \frac{(\nu h-2)U_{N,j}+4U_{N+1,j}}{\nu h+2} \end{aligned}$$

as the ghost points outside \(r=1\). Let L be the discrete operator \(\Delta \) with clamped or simply supported boundary conditions, then the biharmonic operator is approximated by \(L^{2}\) after eliminating the last M rows and columns corresponding to the boundary.

The discretization on an annular domain with an inner radius \(r_{in}\) and an outer radius \(r_{out}\) is similar to the circular case, except that the origin is not included in the domain and therefore the discretized mesh starts at \(r_{in}\) and ends at \(r_{out}\) in the r-direction . An annulus has both inner and outer boundaries, and therefore \(L^{2}\) is obtained by deleting the first and last N rows and columns from the discrete version of the biharmonic operator with clamped or simply supported boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chou, CS. & Kao, CY. Minimizing Eigenvalues for Inhomogeneous Rods and Plates. J Sci Comput 69, 983–1013 (2016). https://doi.org/10.1007/s10915-016-0222-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0222-9

Keywords

Navigation