Skip to main content
Log in

A Weighted ADI Scheme for Subdiffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A weighted ADI scheme is proposed for solving two-dimensional anomalous diffusion equations with the fractional Caputo derivative. The Alikhanov formula (J Comput Phys 280:424–438, 2015) with a weaker assumption is applied to approximate the fractional derivative and a high-order perturbed term of temporal order \(1+2\alpha \) is added to the pure implicit approach. By using the discrete energy method, it is proven that the ADI scheme is stable and convergent with the temporal order of \(\min \{1+2\alpha ,2\}\) such that it achieves second-order time accuracy when \(\frac{1}{2}\le \alpha <1\). Numerical experiments are included to support the theoretical analysis. Application of suggested method to the solution which lacks the smoothness near the initial time is examined by employing a class of nonuniform meshes refined near the singular point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.M., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a 2D anomalous subdiffusion equation. Numer. Algorithms 54, 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, M.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227(2), 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  10. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  11. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, H.L., Zhang, Y.N., Zhao, Y., Shi, H.S.: Stability and convergence of modified Du Fort–Frankel schemes for solving time-fractional subdiffusion equations. J. Sci. Comput. 61(3), 629–648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, X., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algoritms 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56, 159–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  21. Sakamoto, K., Yamamoto, M.: Initial value/ boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Q., Turner, I., Liu, F., Milos, I.: Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Y.N., Sun, Z.Z.: Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 59, 104–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y.N., Sun, Z.Z., Liao, H.L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshs. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Additional information

This research is partly supported by the Grants Nos. 11001271, 91530204 and 11372354 from National Science Foundation of China and the research Grant 010/2015/A from FDCT of Macao, the research Grant MYRG2015-00064-FST from University of Macau.

Appendix: Proof of Lemma 2.3

Appendix: Proof of Lemma 2.3

We evaluate the error \(\mathfrak {R}^{n+\sigma }\) by splitting it into three parts \(\mathfrak {R}^{n+\sigma }=\mathfrak {R}_1^{n}+\mathfrak {R}_2^{n}+\mathfrak {R}_3^{n+\sigma }\), where

$$\begin{aligned}&\mathfrak {R}_1^{n} =\frac{1}{\Gamma (1-\alpha )}\int _{t_{0}}^{t_{1}}\frac{g'(s)-\left[ \Pi _{2,k}g(s)\right] '}{(t_{n+\sigma }-s)^{\alpha }}\,\mathrm {d}{s},\\&\mathfrak {R}_2^{n} =\frac{1}{\Gamma (1-\alpha )}\sum _{k=2}^{n}\int _{t_{k-1}}^{t_{k}}\frac{g'(s)-\left[ \Pi _{2,k}g(s)\right] '}{(t_{n+\sigma }-s)^{\alpha }}\,\mathrm {d}{s},\\&\mathfrak {R}_3^{n+\sigma }=\frac{1}{\Gamma (1-\alpha )}\int _{t_{n}}^{t_{n+\sigma }}\frac{g'(s)-\left[ \Pi _{1,n}g(s)\right] '}{(t_{n+\sigma }-s)^{\alpha }}\,\mathrm {d}{s},\quad n\ge 0. \end{aligned}$$

(i) Estimates of \(\mathfrak {R}_3^{n+\sigma }\) and \(\mathfrak {R}^{\sigma }\). Applying the formula of Taylor expansion, one gets

$$\begin{aligned} g'(s)-\left[ \Pi _{1,n}g(s)\right] '&=g'(s)-\delta _tg^{n+\frac{1}{2}}=g'(s)-g'(t_{n+\frac{1}{2}})+g'(t_{n+\frac{1}{2}})-\delta _tg^{n+\frac{1}{2}}\\&=g''(t_{n+\frac{1}{2}})(s-t_{n+\frac{1}{2}})+\int _{t_{n+\frac{1}{2}}}^sg'''(\lambda )(s-\lambda )\,\mathrm {d}\lambda \\&\quad +\left[ g'(t_{n+\frac{1}{2}})-\delta _tg^{n+\frac{1}{2}}\right] \end{aligned}$$

such that \(\mathfrak {R}_3^{n+\sigma }\) can be split into three parts \(\mathfrak {R}_{3\ell }^{n+\sigma }\) \((\ell =1,2,3)\) corresponding to three terms of the right hand side. If \(\sigma =(2-\alpha )/2\), integration by parts yields (also see [1]),

$$\begin{aligned} \mathfrak {R}_{31}^{n+\sigma }=&\frac{g''(t_{n+\frac{1}{2}})}{\Gamma (1-\alpha )}\int _{t_{n}}^{t_{n+\sigma }}\frac{(s-t_{n+\frac{1}{2}})}{(t_{n+\sigma }-s)^{\alpha }}\,\mathrm {d}{s} =\frac{g''(t_{n+\frac{1}{2}})}{\Gamma (3-\alpha )}\left( \sigma -\frac{2-\alpha }{2}\right) \tau \, t_{\sigma }^{1-\alpha }=0. \end{aligned}$$

Noticing that \(t_{n+\frac{1}{2}}<t_{n+\sigma }<t_{n+1}\), we exchange the order of integrations,

$$\begin{aligned} \mathfrak {R}_{32}^{n+\sigma }&=\frac{1}{\Gamma (1-\alpha )}\int _{t_{n}}^{t_{n+\sigma }} \left[ \int _{t_{n+\frac{1}{2}}}^sg'''(\lambda )(s-\lambda )\,\mathrm {d}\lambda \right] \frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }}\nonumber \\&=\frac{t_{\sigma }^{1-\alpha }}{\Gamma (2-\alpha )}\int _{t_n}^{t_{n+\frac{1}{2}}}g'''(s)(s-t_{n})\,\mathrm {d}{s}\nonumber \\&\quad +\frac{1}{\Gamma (2-\alpha )}\int _{t_{n}}^{t_{n+\frac{1}{2}}}(t_{n+\sigma }-s)^{1-\alpha }\int _{t_{n+\frac{1}{2}}}^sg'''(\lambda )\,\mathrm {d}\lambda \,\mathrm {d}{s}\nonumber \\&\quad +\frac{1}{\Gamma (2-\alpha )}\int _{t_{n+\frac{1}{2}}}^{t_{n+\sigma }}(t_{n+\sigma }-s)^{1-\alpha }\int _{t_{n+\frac{1}{2}}}^sg'''(\lambda )\,\mathrm {d}\lambda \,\mathrm {d}{s} \triangleq \sum _{\ell =1}^3\mathfrak {R}_{32\ell }^{n+\sigma }. \end{aligned}$$
(6.1)

Applying the condition (2.3), it is not difficult to obtain

$$\begin{aligned} \left| \mathfrak {R}_{321}^{n+\sigma }\right| \le&\frac{1}{\Gamma (2-\alpha )}\int _{t_n}^{t_{n+\frac{1}{2}}}t_{\sigma }^{1-\alpha }\left| g'''(s)\right| (s-t_{n})\,\mathrm {d}{s} \le \frac{C_g{\sigma }^{1-\alpha }\tau ^{2-\alpha }}{2\alpha \Gamma (2-\alpha )}(t_{n+\frac{1}{2}}^{\alpha }-t_{n}^{\alpha }),\\ \left| \mathfrak {R}_{322}^{n+\sigma }\right| \le&\frac{1}{\Gamma (2-\alpha )}\int _{t_{n}}^{t_{n+\frac{1}{2}}}(t_{n+\sigma }-s)^{1-\alpha } \int ^{t_{n+\frac{1}{2}}}_s\left| g'''(\lambda )\right| \,\mathrm {d}\lambda \,\mathrm {d}{s} \le \frac{C_g{\sigma }^{1-\alpha }\tau ^{2-\alpha }}{2\alpha \Gamma (2-\alpha )}(t_{n+\frac{1}{2}}^{\alpha }-t_{n}^{\alpha }),\\ \left| \mathfrak {R}_{323}^{n+\sigma }\right| \le&\frac{1}{\Gamma (2-\alpha )}\int _{t_{n+\frac{1}{2}}}^{t_{n+\sigma }}(t_{n+\sigma }-s)^{1-\alpha } \int _{t_{n+\frac{1}{2}}}^s\left| g'''(\lambda )\right| \,\mathrm {d}\lambda \,\mathrm {d}{s} \le \frac{C_g{\sigma }^{1-\alpha }\tau ^{2-\alpha }}{\alpha \Gamma (2-\alpha )}(t_{n+\sigma }^{\alpha }-t_{n+\frac{1}{2}}^{\alpha }), \end{aligned}$$

and then

$$\begin{aligned} \left| \mathfrak {R}_{32}^{n+\sigma }\right| \le&\sum _{\ell =1}^3\left| \mathfrak {R}_{32\ell }^{n+\sigma }\right| \le \frac{C_g{\sigma }^{1-\alpha }\tau ^{2}}{\alpha \Gamma (2-\alpha )}\big [(n+\sigma )^{\alpha }-n^{\alpha }\big ],\quad n\ge 0. \end{aligned}$$
(6.2)

Now consider the third part \(R_{33}^{n+\sigma }\). Applying the formula of Taylor expansion with integral remainder and the condition (2.3), one has

$$\begin{aligned} \big |\delta _tg^{n+\frac{1}{2}}-g'(t_{n+\frac{1}{2}})\big |\le&\frac{1}{2\tau }\Big |\int _{t_{n+\frac{1}{2}}}^{t_{n+1}}g'''(\lambda )(t_{n+1}-\lambda )^2\,\mathrm {d}\lambda +\int _{t_{n}}^{t_{n+\frac{1}{2}}}g'''(\lambda )(\lambda -t_{n})^2\,\mathrm {d}\lambda \Big |\nonumber \\ \le&\frac{C_g\tau }{4}\,\int _{t_{n}}^{t_{n+1}}\left| g'''(\lambda )\right| \,\mathrm {d}\lambda = \frac{C_g\tau ^{1+\alpha }}{4\alpha }\big [(n+1)^{\alpha }-n^{\alpha }\big ],\quad n\ge 0, \end{aligned}$$
(6.3)

and then

$$\begin{aligned}&\left| \mathfrak {R}_{33}^{n+\sigma }\right| \le \frac{\left| g'(t_{n+\frac{1}{2}})-\delta _tg^{n+\frac{1}{2}}\right| }{\Gamma (1-\alpha )}\int _{t_{n}}^{t_{n+\sigma }}\frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }} \le \frac{C_g\sigma ^{1-\alpha }\tau ^2}{4\alpha \Gamma (2-\alpha )}\big [(n+1)^{\alpha }-n^{\alpha }\big ]. \end{aligned}$$
(6.4)

We apply the above estimates (6.2) and (6.4) to get

$$\begin{aligned} \left| \mathfrak {R}^{\sigma }\right| =\left| \mathfrak {R}_3^{\sigma }\right| \le&\sum _{\ell =1}^3\left| \mathfrak {R}_{3\ell }^{\sigma }\right| \le \frac{5\sigma ^{1-\alpha }C_g\tau ^2}{4\alpha \Gamma (2-\alpha )}. \end{aligned}$$

Thus the estimate (2.4) is valid for \(n=0\). For \(n\ge 1\), the estimates (6.2) and (6.4) yield

$$\begin{aligned} \left| \mathfrak {R}_3^{n+\sigma }\right| \le&\sum _{\ell =1}^3\left| \mathfrak {R}_{3\ell }^{n+\sigma }\right| \le \frac{5\sigma ^{1-\alpha }C_g\tau ^{2}}{4\Gamma (2-\alpha )},\quad n\ge 1. \end{aligned}$$
(6.5)

(ii) Estimates of \(\mathfrak {R}_1^{n}\) and \(\mathfrak {R}^{1+\sigma }\). Applying the formula of Taylor expansion, one has

$$\begin{aligned} g'(s)-\left( \Pi _{2,1}g(s)\right) ' =&\frac{s-t_{\frac{1}{2}}}{\tau }\int _{s}^{t_{\frac{3}{2}}}(t_{\frac{3}{2}}-\lambda )g'''(\lambda )\,\mathrm {d}\lambda +\frac{t_{\frac{3}{2}}-s}{\tau }\int _{t_{\frac{1}{2}}}^{s}(\lambda -t_{\frac{1}{2}})g'''(\lambda )\,\mathrm {d}\lambda \\&-\frac{s-t_{\frac{1}{2}}}{\tau }\left[ \delta _tg^{\frac{3}{2}}-g'(t_{\frac{3}{2}})\right] -\frac{t_{\frac{3}{2}}-s}{\tau }\left[ \delta _tg^{\frac{1}{2}}-g'(t_{\frac{1}{2}})\right] ,\quad t_0<s<t_1. \end{aligned}$$

Thus we can split \(\mathfrak {R}_{1}^{n}\) into four parts, \(\mathfrak {R}_1^{n}=\sum _{\ell =1}^4\mathfrak {R}_{1\ell }^{n}\), where \(\mathfrak {R}_{1\ell }^{n}\) \((\ell =1,2,3,4)\) corresponds to the four terms at the right hand side. Using the condition (2.3), one gets

$$\begin{aligned} \left| \mathfrak {R}_{11}^{n}\right|&\le \frac{C_g}{2\Gamma (1-\alpha )}\int _{0}^{t_{1}}\int _{0}^{t_{\frac{3}{2}}}(t_{\frac{3}{2}}-\lambda )\lambda ^{\alpha -1}\,\mathrm {d}\lambda \frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }}\\&\le \frac{(3/2)^{1+\alpha }C_g\tau ^{1+\alpha }}{2\alpha \,\Gamma (1-\alpha )}\int _{0}^{t_{1}}\frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }}\\&\le \frac{9C_g\tau ^{2}}{8\alpha \,\Gamma (2-\alpha )}\left[ (n+\sigma )^{1-\alpha }-(n-1+\sigma )^{1-\alpha }\right] \le \frac{9\sigma ^{-\alpha }C_g\tau ^{2}}{8\alpha \,\Gamma (1-\alpha )},\quad n\ge 1,\\ \left| \mathfrak {R}_{12}^{n}\right|&\le \frac{3}{2\Gamma (1-\alpha )}\int _{0}^{t_{1}}\Big |\int _{t_{\frac{1}{2}}}^{s}(\lambda -t_{\frac{1}{2}})g'''(\lambda )\,\mathrm {d}\lambda \Big | \frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }}\\&\le \frac{3C_g}{2\alpha \,\Gamma (1-\alpha )}\int _{0}^{t_{1}}\int _{0}^{t_1}t_{\frac{1}{2}}\lambda ^{\alpha -1}\,\mathrm {d}\lambda \frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }} \le \frac{3\sigma ^{-\alpha }C_g\tau ^{2}}{4\alpha \,\Gamma (1-\alpha )},\quad n\ge 1. \end{aligned}$$

Applying the estimate (6.3), it is easy to obtain

$$\begin{aligned} \left| \mathfrak {R}_{13}^{n}\right| \le&\frac{\left| g'(t_{\frac{3}{2}})-\delta _tg^{\frac{3}{2}}\right| }{2\Gamma (1-\alpha )}\int _{t_{0}}^{t_{1}}\frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }} \le \frac{\sigma ^{-\alpha }C_g\tau ^{2}}{8\alpha \,\Gamma (1-\alpha )},\quad n\ge 1,\\ \left| \mathfrak {R}_{14}^{n}\right| \le&\frac{3\left| g'(t_{\frac{1}{2}})-\delta _tg^{\frac{1}{2}}\right| }{2\Gamma (1-\alpha )}\int _{t_{0}}^{t_{1}}\frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{\alpha }} \le \frac{3\sigma ^{-\alpha }C_g\tau ^{2}}{8\alpha \,\Gamma (1-\alpha )},\quad n\ge 1, \end{aligned}$$

and then

$$\begin{aligned} \left| \mathfrak {R}_1^{n}\right| \le&\sum _{\ell =1}^4\left| \mathfrak {R}_{1\ell }^{n}\right| \le \frac{3\sigma ^{-\alpha }C_g\tau ^{2}}{\alpha \,\Gamma (1-\alpha )},\quad n\ge 1. \end{aligned}$$
(6.6)

Then it follows from (6.5) and (6.6) that

$$\begin{aligned} \left| \mathfrak {R}^{1+\sigma }\right| \le \left| \mathfrak {R}_1^{1}\right| +\left| \mathfrak {R}_3^{1+\sigma }\right| \le \left( \frac{5}{4}+\frac{3}{\alpha }\right) \frac{\sigma ^{1-\alpha }C_g\tau ^{2}}{\Gamma (2-\alpha )}. \end{aligned}$$

It implies that the claimed estimate (2.4) is valid for \(n=1\).

(iii) Estimates of \(\mathfrak {R}_2^{n}\) and \(\mathfrak {R}^{n+\sigma }\) for \(n\ge 2\). One can apply the formula of integration by parts and the local error of quadratic interpolating polynomial \(\Pi _{2,k}g(s)\) to get

$$\begin{aligned} \mathfrak {R}_2^{n} \triangleq&\frac{1}{\Gamma (1-\alpha )}\sum _{k=2}^{n}\int _{t_{k-1}}^{t_{k}}\frac{\left[ g(s)-\Pi _{2,k}g(s)\right] '}{(t_{n+\sigma }-s)^{\alpha }}\,\mathrm {d}{s} =-\frac{\alpha }{\Gamma (1-\alpha )}\sum _{k=2}^{n}\int _{t_{k-1}}^{t_{k}}\frac{g(s)-\Pi _{2,k}g(s)}{(t_{n+\sigma }-s)^{1+\alpha }}\,\mathrm {d}{s}\\ =&-\frac{\alpha }{6\Gamma (1-\alpha )}\sum _{k=2}^{n} \int _{t_{k-1}}^{t_{k}}\frac{g'''(\vartheta _k)(s-t_{k-1})(s-t_{k})(s-t_{k+1})}{(t_{n+\sigma }-s)^{1+\alpha }}\,\mathrm {d}{s}. \end{aligned}$$

Reminding that \(\int _{t_{k-1}}^{t_{k}}(s-t_{k-1})(t_{k}-s)(t_{k+1}-s)\,\mathrm {d}{s}=\tau ^4/4\), we apply the condition (2.3) and the mean-value law of integrals to find

$$\begin{aligned} \left| \mathfrak {R}_2^{n}\right| \le&\frac{\alpha }{6\Gamma (1-\alpha )}\sum _{k=2}^{n} \frac{C_gt_{k-1}^{\alpha -1}}{(t_{n+\sigma }-\nu _k)^{1+\alpha }} \int _{t_{k-1}}^{t_{k}}(s-t_{k-1})(t_{k}-s)(t_{k+1}-s)\,\mathrm {d}{s}\nonumber \\ \le&\frac{\alpha C_g\tau ^{3}t_1^{\alpha -1}}{24\Gamma (1-\alpha )}\sum _{k=2}^{n} \frac{\tau }{(t_{n+\sigma }-\nu _k)^{1+\alpha }}\le \frac{\alpha C_g\tau ^{2+\alpha }}{24\Gamma (1-\alpha )}\int _{t_{1}}^{t_{n}} \frac{\,\mathrm {d}{s}}{(t_{n+\sigma }-s)^{1+\alpha }}\nonumber \\ =&\frac{C_g\tau ^{2}}{24\Gamma (1-\alpha )}\left[ \sigma ^{-\alpha }-(n-1+\sigma )^{-\alpha }\right] \le \frac{C_g\sigma ^{-\alpha }\tau ^{2}}{24\Gamma (1-\alpha )} \le \frac{C_g\sigma ^{1-\alpha }\tau ^{2}}{12\Gamma (2-\alpha )},\quad n\ge 2, \end{aligned}$$
(6.7)

where \(\nu _k\in (t_{k-1},t_k)\), \(1\le k\le n\). Then we apply (6.5), (6.6) and (6.7) to get

$$\begin{aligned} \left| \mathfrak {R}^{n+\sigma }\right| \le \left| \mathfrak {R}_1^{n}\right| +\left| \mathfrak {R}_2^{n}\right| +\left| \mathfrak {R}_3^{n+\sigma }\right| \le \frac{4\sigma ^{1-\alpha }C_g\tau ^{2}}{\alpha \,\Gamma (2-\alpha )},\quad n\ge 2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hl., Zhao, Y. & Teng, Xh. A Weighted ADI Scheme for Subdiffusion Equations. J Sci Comput 69, 1144–1164 (2016). https://doi.org/10.1007/s10915-016-0230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0230-9

Keywords

Profiles

  1. Hong-lin Liao