Abstract
In this paper, we propose a new h-adaptive indicator for the Runge–Kutta discontinuous Galerkin (RKDG) scheme in simulations of the Vlasov–Poisson (VP) system. This adaptive indicator, tailored for the VP system, is based on the principle that each cell assumes solution variations as equally as possible. Under the framework of the RKDG method, such adaptive indicator is particularly simple and cheap for the computation. Its effectiveness is demonstrated by extensive numerical tests. The detailed adaptive algorithm as well as some important implementation issues, including the grid and data structure, adaptive criteria, data prolongation/projection and mesh projection, is presented.












Similar content being viewed by others
References
Ayuso, B., Carrillo, J.A., Shu, C.-W.: Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. Kinet. Relat. Model. 4, 955–989 (2011)
Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)
Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. CRC Press, Boca Raton (2004)
Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)
Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)
Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)
Cheng, Y., Gamba, I.M., Morrison, P.J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56(2), 319–349 (2013)
Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)
Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)
Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010)
Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge–Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45, 514–538 (2007)
Devine, K., Flaherty, J.: Parallel adaptive \(hp\)-refinement techniques for conservation laws. Appl. Numer. Math. 20, 367–386 (1996)
Eastwood, J.W.: Particle simulation methods in plasma physics. Comput. Phys. Commun. 43, 89–106 (1986)
Fijalkow, E.: A numerical solution to the Vlasov equation. Comput. Phys. Commun. 116(2–3), 319–328 (1999)
Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)
Filbet, F., Sonnendrucker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166–187 (2001)
Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)
Heath, R., Gamba, I., Morrison, P., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231, 1140–1174 (2012)
Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (2010)
Klimas, A., Farrell, W.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110, 150–163 (1994)
Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229(4), 1130–1149 (2010)
Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10(4), 979–1000 (2011)
Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)
Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)
Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)
Schaeffer, J.: Global existence of smooth solutions to the Vlasov Poisson system in three dimensions. Commun. Part. Differ. Equ. 16(8–9), 1313–1335 (1991)
Shen, C., Qiu, J.-M., Christlieb, A.: Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J. Comput. Phys. 230(10), 3780–3802 (2011)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)
Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)
Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)
Zaki, S., Boyd, T., Gardner, L.: A finite element code for the simulation of one-dimensional Vlasov plasmas. II. Applications. J. Comput. Phys. 79, 200–208 (1988)
Zaki, S., Gardner, L., Boyd, T.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)
Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)
Zhou, T., Guo, Y., Shu, C.-W.: Numerical study on Landau damping. Phys. D 157(4), 322–333 (2001)
Zhu, H., Qiu, J.: Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)
Zhu, H., Qiu, J.: An \(h\)-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv. Comput. Math. 39, 445–463 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research is partially supported by NSFC Grants 11201242, 91530107 and 11571290, NSF Grants NSF-DMS-1217008 and NSF-DMS-1522777, Jiangsu Government Scholarship for Overseas Studies, and Air Force Office of Scientific Computing FA9550-12-0318.
Rights and permissions
About this article
Cite this article
Zhu, H., Qiu, J. & Qiu, JM. An h-Adaptive RKDG Method for the Vlasov–Poisson System. J Sci Comput 69, 1346–1365 (2016). https://doi.org/10.1007/s10915-016-0238-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0238-1