Abstract
Nonlinear parabolic equation is studied with a linearized Galerkin finite element method. First of all, a time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, a rigorous analysis for the regularity of the time-discrete system is presented based on the proof of the temporal error skillfully. On the other hand, the spatial error is derived \(\tau \)-independently with the above achievements. Then, the superclose result of order \(O(h^2+\tau ^2)\) in broken \(H^1\)-norm is deduced without any restriction of \(\tau \). The two typical characters of the \({\textit{EQ}}_1^{rot}\) nonconforming FE (see Lemma 1 below) play an important role in the procedure of proof. At last, numerical results are provided in the last section to confirm the theoretical analysis. Here, h is the subdivision parameter, and \(\tau \), the time step.
Similar content being viewed by others
References
Gao, G.H., Wang, T.K.: Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations. J. Comput. Appl. Math. 233(9), 2285–2301 (2010)
Chatzipantelidis, P., Lazarov, R.D., Thomée, V.: Error estimates for the finite volume element method for parobolic equations in convex polygonal domains. Numer. Methods Partial Differ. Equ. 20, 650–674 (2003)
Wang, T.K.: Alternating direction finite volume element methods for 2D parabolic partial differential equations. Numer. Methods Partial Differ. Equ. 24(1), 24–40 (2008)
Sinha, R.K., Ewing, R.E., Lazarov, R.D.: Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data. SIAM J. Numer. Anal. 43(6), 2320–2344 (2008)
Yang, D.Q.: Improved error estimation of dynamic finite element methods for second-order parabolic equations. J. Comput. Appl. Math. 126(1–2), 319–338 (2000)
He, X.M., Lin, T., Lin, Y.P., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29(2), 619–646 (2013)
Li, Q.H., Wang, J.P.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 2004–2024 (2013)
Pani, A.K., Fairweather, G.: An \(H^1\)-galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 40(4), 1475–1490 (2003)
Zhang, Y., Shi, D.Y.: Superconvergence of an \(H^1\)-Galerkin nonconforming mixed finite element method for a parabolic equation. Comput. Math. Appl. 66(11), 2362–2375 (2013)
Sun, T.J., Ma, K.Y.: Domain decomposition procedures combined with \(H^1\)-Galerkin mixed finite element method for parabolic equation. J. Comput. Appl. Math. 267, 33–48 (2014)
Pani, A.K.: An \(H^1\)-Galerkin mixed finite element methods for parabolic partial differential equatios. SIAM J. Numer. Anal. 35(2), 712–727 (1998)
Pani, A.K.: \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 22, 231–252 (2002)
Chen, F.X.: Crank-Nicolson fully discrete \(H^1\)-Galerkin mixed finite element approximation of one nonlinear integro-differential model. Abstr. Appl. Anal. Article ID 534902 (2014)
Goswami, D., Pani, A.K., Yadav, S.: Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data. J. Sci. Comput. 56(1), 131–164 (2013)
Dawson, C., Kirby, R.: Solution of parabolic equation by backward Euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (1999)
Sinha, R.K., Ewing, R.E., Lazarov, R.D.: Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal. 47(5), 3269–3292 (2009)
Thomée, V.: Galerkin finite element methods for parabolic problems. Springer series in computational mathematics, Sweden (2000)
Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)
Wang, T.C., Guo, B.L., Zhang, L.M.: New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 217(4), 1604–1619 (2010)
Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)
Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10(3), 622–633 (2013)
Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)
Hou, Y.R., Li, B.Y., Sun, W.W.: Error estimates of splitting galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51(1), 88–111 (2013)
Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58(3), 627–647 (2014)
Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estiamtes of a CrankCNicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933–954 (2014)
Wang, J.L.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)
Lin, Q., Tobiska, L., Zhou, A.H.: Superconvergence and extrapolation of nonconformimg low order finite elements applied to the poisson equation. IMA J. Numer. Anal. 25(1), 160–181 (2005)
Shi, D.Y., Mao, S.P., Chen, S.C.: An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math. 23(3), 261–274 (2005)
Jia, S.H., Xie, H.H., Yin, X.B., Gao, S.Q.: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods. Appl. Math. 54(1), 1–15 (2009)
Shi, D.Y., Ren, J.C.: Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Anal. 71(9), 3842–3852 (2009)
Shi, D.Y., Xu, C., Chen, J.H.: Anisotropic nonconforming \(EQ^{rot}_1\) quadrilateral finite element approximation to second order elliptic problems. J. Sci. Comput. 56(3), 637–653 (2013)
Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa 20(3), 733–737 (1966)
Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992)
Hu, J., Man, H.Y., Shi, Z.C.: Constrained nonconforming rotated \(Q^1\) element for Stokes flow and planar elasticity. Math. Numer. Sin. 27(3), 311–324 (2005)
Shi, D.Y., Wang, C.X.: Superconvergence analysis of the nonconforming mixed finite element method for Stokes problem. Acta Math. Appl. Sin. 30(6), 1056–1064 (2007)
Park, C.J., Sheen, D.W.: \(P^1\)-nonconforming quadrilateral finite element method for second order elliptic problem. SIAM J. Numer. Anal. 41(2), 624–640 (2003)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Nos. 11271340).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, D., Wang, J. & Yan, F. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with \({\textit{EQ}}_1^{rot}\) Nonconforming Finite Element. J Sci Comput 70, 85–111 (2017). https://doi.org/10.1007/s10915-016-0243-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0243-4
Keywords
- Nonlinear parabolic equation
- Temporal error and spatial error
- \({\textit{EQ}}_1^{rot}\) nonconforming FEM
- Unconditionally
- Superclose result