Skip to main content

Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with \({\textit{EQ}}_1^{rot}\) Nonconforming Finite Element

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Nonlinear parabolic equation is studied with a linearized Galerkin finite element method. First of all, a time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, a rigorous analysis for the regularity of the time-discrete system is presented based on the proof of the temporal error skillfully. On the other hand, the spatial error is derived \(\tau \)-independently with the above achievements. Then, the superclose result of order \(O(h^2+\tau ^2)\) in broken \(H^1\)-norm is deduced without any restriction of \(\tau \). The two typical characters of the \({\textit{EQ}}_1^{rot}\) nonconforming FE (see Lemma 1 below) play an important role in the procedure of proof. At last, numerical results are provided in the last section to confirm the theoretical analysis. Here, h is the subdivision parameter, and \(\tau \), the time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, G.H., Wang, T.K.: Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations. J. Comput. Appl. Math. 233(9), 2285–2301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chatzipantelidis, P., Lazarov, R.D., Thomée, V.: Error estimates for the finite volume element method for parobolic equations in convex polygonal domains. Numer. Methods Partial Differ. Equ. 20, 650–674 (2003)

    Article  MATH  Google Scholar 

  3. Wang, T.K.: Alternating direction finite volume element methods for 2D parabolic partial differential equations. Numer. Methods Partial Differ. Equ. 24(1), 24–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sinha, R.K., Ewing, R.E., Lazarov, R.D.: Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data. SIAM J. Numer. Anal. 43(6), 2320–2344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, D.Q.: Improved error estimation of dynamic finite element methods for second-order parabolic equations. J. Comput. Appl. Math. 126(1–2), 319–338 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, X.M., Lin, T., Lin, Y.P., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29(2), 619–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Q.H., Wang, J.P.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 2004–2024 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Pani, A.K., Fairweather, G.: An \(H^1\)-galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 40(4), 1475–1490 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Shi, D.Y.: Superconvergence of an \(H^1\)-Galerkin nonconforming mixed finite element method for a parabolic equation. Comput. Math. Appl. 66(11), 2362–2375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, T.J., Ma, K.Y.: Domain decomposition procedures combined with \(H^1\)-Galerkin mixed finite element method for parabolic equation. J. Comput. Appl. Math. 267, 33–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pani, A.K.: An \(H^1\)-Galerkin mixed finite element methods for parabolic partial differential equatios. SIAM J. Numer. Anal. 35(2), 712–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pani, A.K.: \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 22, 231–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, F.X.: Crank-Nicolson fully discrete \(H^1\)-Galerkin mixed finite element approximation of one nonlinear integro-differential model. Abstr. Appl. Anal. Article ID 534902 (2014)

  14. Goswami, D., Pani, A.K., Yadav, S.: Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data. J. Sci. Comput. 56(1), 131–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dawson, C., Kirby, R.: Solution of parabolic equation by backward Euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sinha, R.K., Ewing, R.E., Lazarov, R.D.: Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. SIAM J. Numer. Anal. 47(5), 3269–3292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer series in computational mathematics, Sweden (2000)

  18. Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, T.C., Guo, B.L., Zhang, L.M.: New conservative difference schemes for a coupled nonlinear Schrödinger system. Appl. Math. Comput. 217(4), 1604–1619 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10(3), 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hou, Y.R., Li, B.Y., Sun, W.W.: Error estimates of splitting galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51(1), 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58(3), 627–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estiamtes of a CrankCNicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J.L.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, Q., Tobiska, L., Zhou, A.H.: Superconvergence and extrapolation of nonconformimg low order finite elements applied to the poisson equation. IMA J. Numer. Anal. 25(1), 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, D.Y., Mao, S.P., Chen, S.C.: An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math. 23(3), 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Jia, S.H., Xie, H.H., Yin, X.B., Gao, S.Q.: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods. Appl. Math. 54(1), 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, D.Y., Ren, J.C.: Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Anal. 71(9), 3842–3852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shi, D.Y., Xu, C., Chen, J.H.: Anisotropic nonconforming \(EQ^{rot}_1\) quadrilateral finite element approximation to second order elliptic problems. J. Sci. Comput. 56(3), 637–653 (2013)

    Article  MathSciNet  Google Scholar 

  32. Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa 20(3), 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  33. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, J., Man, H.Y., Shi, Z.C.: Constrained nonconforming rotated \(Q^1\) element for Stokes flow and planar elasticity. Math. Numer. Sin. 27(3), 311–324 (2005)

    MathSciNet  Google Scholar 

  35. Shi, D.Y., Wang, C.X.: Superconvergence analysis of the nonconforming mixed finite element method for Stokes problem. Acta Math. Appl. Sin. 30(6), 1056–1064 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Park, C.J., Sheen, D.W.: \(P^1\)-nonconforming quadrilateral finite element method for second order elliptic problem. SIAM J. Numer. Anal. 41(2), 624–640 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11271340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Wang, J. & Yan, F. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with \({\textit{EQ}}_1^{rot}\) Nonconforming Finite Element. J Sci Comput 70, 85–111 (2017). https://doi.org/10.1007/s10915-016-0243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0243-4

Keywords

Mathematics Subject Classification