Skip to main content
Log in

Stability of Nonlinear Convection–Diffusion–Reaction Systems in Discontinuous Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we provide an extension of the classical von Neumann stability analysis for high-order accurate discontinuous Galerkin methods applied to generalized nonlinear convection–reaction–diffusion systems. We provide a partial linearization under which a sufficient condition emerges that guarantees stability in this context. The stability behavior of these systems is then closely analyzed relative to Runge–Kutta Chebyshev (RKC) and strong stability preserving (RKSSP) temporal discretizations over a nonlinear system of reactive compressible gases arising in the study of atmospheric chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note that here we choose the weak mixed formulation for convenience, but the resulting theory can be easily shown to work more broadly, e.g. the strong form mixed formulation.

References

  1. Ammari, H.: Modeling and computations in electromagnetics: a volume dedicated to Jean-Claude Nedelec. Lecture Notes in Computational Science and Engineering. Springer, Dordrecht, (2007)

  2. Arnold, D., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin methods (Newport, RI, 1999), volume 11 of Lect. Notes Comput. Sci. Eng., pp. 89–101. Springer, Berlin, (2000)

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K.E.: An introduction to numerical analysis, 2nd edn. John Wiley & Sons Inc, New York (1989)

    MATH  Google Scholar 

  5. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., Wallington, T.J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume IV—gas phase reactions of organic halogen species. Atmos. Chem. Phys. 8(15), 4141–4496 (2008)

    Article  Google Scholar 

  6. Chapman, S., Cowling, T.G.: The mathematical theory of nonuniform gases. Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. In co-operation with D. Burnett, With a foreword by Carlo Cercignani (1990)

  7. Dawson, C., Westerink, J., Feyen, J., Pothina, D.: Continuous, discontinuous and coupled discontinuous-continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids 52(1), 63–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Descombes, S., Massot, M.: Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction. Numer. Math. 97(4), 667–698 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Novotný, A., Petzeltová, H.: On the domain dependence of solutions to the compressible Navier–Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25(12), 1045–1073 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Phys. Plasm. Two-fluid magnetic island dynamics in slab geometry. ii. islands interacting with resistive walls or resonant magnetic perturbations. 12(2), 022307 (2005)

  11. Multicomponent flow modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA (1999)

  12. Gottlieb, S., Ketcheson, D., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev 43(1), 89–112 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirschfelder, J., Curtiss, C., Bird, R.: The Molecular Theory of Gases and Liquids. Structure of Matter Series. Wiley-Interscience, New York (1954)

    MATH  Google Scholar 

  16. Janenko, N. N.: The method of fractional steps for the solution of problems in continuum mechanics. In: Partial differential equations (Proc. Sympos.) (Russian), pp. 239–249. Izdat. “Nauka”, Moscow (1970)

  17. Kubatko, E., Dawson, C., Westerink, J.: Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227(23), 9697–9710 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kubatko, E., Westerink, J., Dawson, C.: An unstructured grid morphodynamic model with a discontinuous Galerkin method for bed evolution. Ocean Modell. 15(1–2) 71–89, (2006) 3rd International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows, Toulouse, France. SEP 20–22, (2004)

  19. Kubatko, E., Westerink, J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kubatko, E., Yeager, B., Ketcheson, D.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007)

  22. Liu, H., Yu, H.: The entropy satisfying discontinuous Galerkin Method for Fokker–Planck equations. J. Sci. Comput. 62(3), 803–830 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, X., Nie, Q.: Compact integration factor methods for complex domains and adaptive mesh refinement. J. Comput. Phys. 229(16), 5692–5706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loverich, J., Hakim, A., Shumlak, U.: A discontinuous Galerkin method for ideal two-fluid plasma equations. Commun. Comput. Phys. 9(2), 240–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, B., Zhou, Y.C.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys. J. 100(10), 2475–2485 (2011)

    Article  Google Scholar 

  26. Mellet, A., Vasseur, A.: On the barotropic compressible Navier–Stokes equations. Comm. Partial Differ. Equ. 32(1–3), 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Michoski, C., Evans, J., Schmitz, P.: Discontinuous galerkin-adaptive methods for multiscale chemical reactors: Quiescent reactors. Comput. Methods Appl. Mech. Eng. 279, 163–197 (2014)

    Article  MathSciNet  Google Scholar 

  28. Michoski, C., Vasseur, A.: Existence and uniqueness of strong solutions for a compressible multiphase Navier–Stokes miscible fluid-flow problem in dimension n = 1. Math. Models Methods Appl. Sci. 19(03), 443–476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical modeling of collective behavior in socio-economic and life sciences. Birkhäuser Boston, Boston (2010)

    MATH  Google Scholar 

  30. Ropp, D.L., Shadid, J.N.: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems. J. Comput. Phys. 203(2), 449–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ropp, D.L., Shadid, J.N.: Stability of operator splitting methods for systems with indefinite operators: advection-diffusion-reaction systems. J. Comput. Phys. 228(9), 3508–3516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruuth, S.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comp 75(253), 183–207 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smoller, J.: Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, second edition, (1994)

  35. Solonnikov, V. A., Tani, A.: Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid. In The Navier–Stokes equations II—theory and numerical methods (Oberwolfach, 1991), volume 1530 of Lecture Notes in Math., pages 30–55. Springer, Berlin, (1992)

  36. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161(1), 140–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Srinivasan, B., Hakim, A., Shumlak, U.: Numerical methods for two-fluid dispersive fast MHD phenomena. Commun. Comput. Phys. 10(1), 183–215 (2011)

    Article  MathSciNet  Google Scholar 

  38. Strikwerda, J.C.: Finite difference schemes and partial differential equations, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004)

    Book  MATH  Google Scholar 

  39. Sutherland, J., Kennedy, C.: Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502–524 (2003)

    Article  MATH  Google Scholar 

  40. Tabei, M., Mast, T., Waag, R.: A k-space method for coupled first-order acoustic propagation equations. J. Acoust. Soc. Am. 111(1, 1), 53–63 (2002)

    Article  Google Scholar 

  41. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to hyperbolic-parabolic equations. Numer. Math. 106(2), 303–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trefethen, L. N.: Finite difference and spectral methods for ordinary and partial differential equations (1996)

  43. van Der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stage Runge–Kutta methods for large m-values. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 60(10), 479–485 (1980)

    MathSciNet  MATH  Google Scholar 

  44. Verwer, J .G., Sommeijer, B .P.: An implicit-explicit Runge–Kutta–Chebyshev scheme for diffusion-reaction equations. SIAM J. Sci. Comput 25(5), 1824–1835 (2004). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, F.-B.: A PDE system modeling the competition and inhibition of harmful algae with seasonal variations. Nonlinear Anal. Real World Appl. 25, 258–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wanner, G., Hairer, E., Norsett, S.: Order stars and stability theorems. BIT Numer. Math. 18(4), 475–489 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wiebe, N., Berry, D., Høyer, P., Sanders, B.C.: Higher order decompositions of ordered operator exponentials. J. Phys. A Math. Theor. 43(6), 065203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, F., Carr, R.W.: Kinetics of CH2ClO radical reactions with O2 and NO, and the unimolecular elimination of HCl. J. Phys. Chem. A 105(9), 1423–1432 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Clint Dawson and Craig Michoski would like to acknowledge the support of the National Science Foundation grant ACI-1339801. Ethan Kubatko would like to aknowledge support of the National Science Foundation grant DMS-1217218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michoski.

Appendix

Appendix

1.1 Computation of the \(G^{\star }\) Operator:

In this section we briefly outline the definition of the operators appearing in an RK scheme. Note that at the ith stage of an RK scheme we can write \({\varvec{u}}^{{(i)}} = G_i u^{(0)}\) where \(G_{i}\) is an i th degree polynomial. Identifying the \(G_i\) polynomials with the s-vectors of their coefficients, we have for the RKSSP scheme:

$$\begin{aligned} G_{0}= (1,0, \cdots ,0)^T, \quad G_{1} = (0,1,0, \cdots ,0)^T, \end{aligned}$$

and for \(2 \le i \le s\),

$$\begin{aligned} G_{i,k} = {\left\{ \begin{array}{ll} \displaystyle \sum _{l=0}^{i-1} \alpha _{i-1,l}G_{l,0} -\frac{\alpha _{0,0}}{\beta _{0,0}}\beta _{i-1,l}G_{l,0} \quad &{}\text {for } k = 0,\\ \displaystyle \sum _{l=0}^{i-1} [\alpha _{i-1,l}G_{l,k} -\frac{a_{0,0}}{\beta _{0,0}}\beta _{i-1,l}G_{l,0} +\frac{1}{\beta _{1,1}}\beta _{i-1,l}G_{l,k-1}] \quad &{}\text {for } 2\le k \le i,\\ \displaystyle 0 \quad &{}\text {for } i+1\le k \le s.\\ \end{array}\right. } \end{aligned}$$
(6.1)

For the RKC scheme we have,

$$\begin{aligned} G_{i,k} = {\left\{ \begin{array}{ll} \displaystyle (1 - \mu _{i} - \nu _{i}) + \mu _{i}G_{i-1,0} + \nu _{i}G_{i-2,0} - \frac{1}{\tilde{\mu }_{1}}(\tilde{\mu }_{i}G_{i-1,0}+\tilde{\gamma }_{i}) \quad &{}\text {for } k = 0, \\ \displaystyle \mu _{i}G_{i-1,1} + \nu _{i}G_{i-2,1} + \frac{1}{\tilde{\mu }_{1}}(\tilde{\gamma }_{i} + \tilde{\mu }_{i}G_{i-1,0} -\tilde{\mu }_{i}G_{i-1,1}) \quad &{}\text {for } k = 1,\\ \displaystyle \mu _{i}G_{i-1,k} + \nu _{i}G_{i-2,k} + \frac{1}{\tilde{\mu }_{1}}(\tilde{\mu }_{i}G_{i-1,k-1} - \tilde{\mu }_{i}G_{i-1,k}) \quad &{}\text {for } 2\le k \le i,\\ \displaystyle 0 \quad &{}\text {for } i+1\le k \le s.\\ \end{array}\right. } \end{aligned}$$
(6.2)

Finally, we use \(G^{\star }=G_s\) as the definition of the \(G^\star \) operator.

1.2 Simple illustrative example: Burger’s equation

Consider the one-dimensional Burger’s equation

$$\begin{aligned} u_t + \frac{1}{2}(u^2)_{x} = 0, \end{aligned}$$

with periodic boundary data. The weak form of such a system satisfies (2.7), such that:

$$\begin{aligned} \frac{d}{dt}\int _{\Omega _{e_{i}}} \varphi _{h}u_{h} \,dx = F_{i} - \int _{\Omega _{e_{i}}} f(u_{h})\partial _{x}\varphi _{h}\,dx. \end{aligned}$$
(6.3)

Note here that \(f = u^2/2\).

Now, to proceed a numerical flux is specified that is associated to \(F_{i}\). For illustration, let us choose the local Lax-Friedrich’s flux

$$\begin{aligned} \hat{f}_{\mathrm {LLF}} = \frac{1}{2} (f|_{\Gamma _{i\ell }}+f|_{\Gamma _{\ell i}} - \alpha (u_{h}|_{\Gamma _{i\ell }}-u_{h}|_{\Gamma _{\ell i}}), \end{aligned}$$

such that,

$$\begin{aligned} F_{i} = \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} (\hat{f}_{\mathrm {LLF}})_{i\ell }\varphi _{h}|_{\Gamma _{i\ell }} n dS. \end{aligned}$$

Now that the flux has been specified, we proceed with the partial linearization from (3.3). The first step in doing so is to rewrite the representation with respect to the lth degree of freedom and replace f with the partial linearization in the volume integral, such that:

$$\begin{aligned} \frac{d}{dt} u_{l}^{i}(t) = \frac{2l+1}{h} \bigg \{ F_{il} - \int _{\Omega _{e_{i}}} (J_uf) u_{h} \partial _{x}\varphi _{l}(x)\,dx \bigg \}. \end{aligned}$$
(6.4)

Next the partial linearization is performed on the flux representations, such that:

$$\begin{aligned} F_{il} = \frac{1}{2} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} \left( f|_{\Gamma _{i\ell }}+f|_{\Gamma _{\ell i}} - \alpha (u_{h}|_{\Gamma _{i\ell }}-u_{h}|_{\Gamma _{\ell i}})\right) n_{i\ell } \varphi _{l} dS, \end{aligned}$$
(6.5)

where the Jacobian in this case is trivially \((J_{u}f)|_{\Gamma _{i\ell }} = u_{h}|_{\Gamma _{i\ell }}\), and \(\alpha = \max (u_{h}|_{\Gamma _{i\ell }},u_{h}|_{\Gamma _{\ell i}})\). This means we now have the system:

$$\begin{aligned} \frac{d}{dt} u_{l}^{i} = \frac{2l+1}{h} \bigg \{ \frac{1}{2} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} ( [(J_{u}f)u_{h}]|_{\Gamma _{i\ell }}&+[(J_{u}f)u_{h}]|_{\Gamma _{\ell i}} - \alpha (u_{h}|_{\Gamma _{i\ell }}-u_{h}|_{\Gamma _{\ell i}})) \varphi _{l} n_{i\ell } dS \nonumber \\&- \int _{\Omega _{e_{i}}} (J_uf) u_{h} \partial _{x}\varphi _{l}(x)\,dx \bigg \}, \end{aligned}$$
(6.6)

so that using the same argument from Sect. 3.2, the flux can now be split relative to contributions determined by the stencil generated by cell “ownership,” as in (3.4).

To make this explicit, let us consider only the flux contribution,

$$\begin{aligned} \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} ( [(J_{u}f)u_{h}]|_{\Gamma _{i\ell }} +[(J_{u}f)u_{h}]|_{\Gamma _{\ell i}} - \alpha (u_{h}|_{\Gamma _{i\ell }}-u_{h}|_{\Gamma _{\ell i}})) \varphi _{l} n_{i\ell } dS. \end{aligned}$$

This term is rewritten relative to cell ownership, such that:

$$\begin{aligned}&\frac{2l+1}{2h} \left( \sum _{k,m}^{n_{p}}F'_{km}u_{m}\varphi _{l}\right) \bigg |_{\Gamma _{i\ell }} + \frac{2l+1}{2h} \left( \sum _{k,m}^{n_{p}}F'_{km}u_{m}\varphi _{l}\right) \bigg |_{\Gamma _{\ell i}} \nonumber \\&= \left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} (J_{u}f|_{\Gamma _{i\ell }}-\alpha )u_{h}|_{\Gamma _{i\ell }} \varphi _{l} n_{i\ell } dS \right) \nonumber \\&\quad + \left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{\ell i}} (J_{u}f|_{\Gamma _{\ell i}}+\alpha )u_{h}|_{\Gamma _{\ell i}} \varphi _{l} n_{i\ell } dS \right) . \end{aligned}$$
(6.7)

This makes it clear now that the \(F'_{km}\) denotes an evaluated form of \(J_{u}f +\alpha \).

As stated in Sect 3.2, \(F'_{jkm}\) is an \(N\times (n_{p}+1)^{2}\) tensor, meaning for a single component flow such as Burger’s, we have that \(F'_{km}\) is a \((n_{p}+1)\times (n_{p}+1)\) matrix, in this case defined by:

$$\begin{aligned} F'_{km} = \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} (J_{u}f|_{\Gamma _{i\ell }}+\alpha )_{k}\varphi _{m} n_{i\ell } dS. \end{aligned}$$

To see this we recognize that \((J_{u}f) = u_{h} = \sum _{l=0}^{n_{p}} u_{l}\varphi _{l}\) is a vector of length \(n_{p}+1\), as is \(\alpha \). Thus simply factoring out the basis function from the solution, and evaluating at the support points yields:

$$\begin{aligned}&\left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} (J_{u}f|_{\Gamma _{i\ell }}-\alpha )u_{h}|_{\Gamma _{i\ell }} \varphi _{l} n_{i\ell } dS \right) \nonumber \\&\quad + \left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\int _{\Gamma _{i\ell }} (J_{u}f|_{\Gamma _{\ell i}}+\alpha )u_{h}|_{\Gamma _{\ell i}} \varphi _{l} n_{i\ell } dS \right) \nonumber \\&\quad = \left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\sum _{k,m}^{n_q}\int _{\Gamma _{i\ell }} (J_{u}f|_{\Gamma _{i\ell }}-\alpha )_{k}(\varphi _{m}u_{m})|_{\Gamma _{i\ell }} \varphi _{l} n_{i\ell } dS \right) \nonumber \\&\quad + \left( \frac{2l+1}{2h} \sum _{\ell \in \Xi (i)}\sum _{k,m}^{n_q}\int _{\Gamma _{\ell i}} (J_{u}f|_{\Gamma _{\ell i}}+\alpha )_{k} (\varphi _{m} u_{m})|_{\Gamma _{\ell i}} \varphi _{l} n_{i\ell } dS \right) . \end{aligned}$$
(6.8)

Notice that (6.6), after substituting the explicit form (6.8) in for the surface terms, comprise the matrices in (3.11) that end up forming the \(G_{j}\) matrix from (3.12).

The factored contribution \(F'_{km}\), being an \((n_p +1) \times (n_p + 1)\) matrix, clearly has dependencies on the degrees of freedom (e.g. the spatial nodes) of the cell that owns it. However, the assumption of the partial linearization (3.2) is that within the cell distance \(\Delta x < h\), these spatial dependencies can be decoupled (by scaling arguments) from the dependencies in the Fourier expansion and subsequent shift. Numerical examples seem to reinforce the validity of this assumption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoski, C., Alexanderian, A., Paillet, C. et al. Stability of Nonlinear Convection–Diffusion–Reaction Systems in Discontinuous Galerkin Methods. J Sci Comput 70, 516–550 (2017). https://doi.org/10.1007/s10915-016-0256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0256-z

Keywords

Navigation