Skip to main content

Advertisement

Log in

Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose several second order in time, fully discrete, linear and nonlinear numerical schemes for solving the phase field model of two-phase incompressible flows, in the framework of finite element method. The schemes are based on the second order Crank–Nicolson method for time discretization, projection method for Navier–Stokes equations, as well as several implicit–explicit treatments for phase field equations. The energy stability and unique solvability of the proposed schemes are proved. Ample numerical experiments are performed to validate the accuracy and efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., vol. 30, pp. 139–165. Annual Reviews, Palo Alto, CA (1998)

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1985) (1984). doi:10.1007/BF02576171

  3. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013). doi:10.1137/120880677

    Article  MathSciNet  MATH  Google Scholar 

  4. Bray, A.: Theory of phase-ordering kinetics. Adv. Phys. 43(3), 509–523 (1994)

    Article  MathSciNet  Google Scholar 

  5. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001). doi:10.1006/jcph.2001.6715

    Article  MathSciNet  MATH  Google Scholar 

  6. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9, 417–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahn, J.W.: Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30(5), 1121–1124 (1959)

    Article  Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfatial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  9. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge Univ Press, Cambridge (1995)

    Book  Google Scholar 

  10. Chen, L., Shen, J.: Applications of semi-implicit fourier-spectral method to phase field equations. Comput. Phys. Commun. 108(23), 147–158 (1998). doi:10.1016/S00104655(97)00115-X

    Article  MATH  Google Scholar 

  11. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems, Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

  13. Collins, C., Shen, J., Wise, S.M.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13(4), 929–957 (2013)

    Article  MathSciNet  Google Scholar 

  14. Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231(17), 5788–5804 (2012). doi:10.1016/j.jcp.2012.04.041

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Et, W., Liu, J.G.: Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal 32(4), 1017–1057 (1995). doi:10.1137/0732047

    Article  MathSciNet  MATH  Google Scholar 

  17. Elder, K.R., Grant, M., Provatas, N., Kosterlitz, J.M.: Sharp interface limits of phase-field models. Phys. Rev. E. 64, 021604 (2001)

    Article  Google Scholar 

  18. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39–46. MRS, Warrendale, PA (1998)

  19. Fick, A.E.: Über diffusion. Poggend. Ann. d. Physik u. Chem. 94, 59–86 (1855)

  20. Guermond, J.L., Quartapelle, L.: On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids 26(9), 1039–1053 (1998). doi:10.1002/(SICI)1097-0363(19980515)26:9<1039:AID-FLD675>3.0.CO;2-U

  21. Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80(2), 207–238 (1998). doi:10.1007/s002110050366

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003). doi:10.1137/S0036142901395400

    Article  MathSciNet  MATH  Google Scholar 

  23. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). doi:10.1016/j.jcp.2012.09.020

    Article  MathSciNet  MATH  Google Scholar 

  24. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996). doi:10.1142/S0218202596000341

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015). doi:10.1016/j.jcp.2015.02.046

    Article  MathSciNet  MATH  Google Scholar 

  26. Hecht, F.: New development in freefem\(++\). J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Hohenberg, P., Halperin, B.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977). doi:10.1103/RevModPhys.49.435

    Article  Google Scholar 

  28. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009). doi:10.1016/j.jcp.2009.04.020

    Article  MathSciNet  MATH  Google Scholar 

  29. Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving c0 finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230(19), 7115–7131 (2011). doi:10.1016/j.jcp.2011.05.013

    Article  MathSciNet  MATH  Google Scholar 

  30. Ingram, R.: A new linearly extrapolated Crank–Nicolson time-stepping scheme for the Navier–Stokes equations. Math. Comput. 82(284), 1953–1973 (2013). doi:10.1090/S0025-5718-2013-02678-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008). doi:10.4171/IFB/178

    Article  MathSciNet  Google Scholar 

  32. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004). doi:10.1016/j.jcp.2003.07.035

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, P., Liu, C.: Simulation of singularity dynamics in liquid crystal flows: a C0 finite element approach. J. Comput. Phys. 215, 348–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Phys. D Nonlinear Phenom. 179(34), 211–228 (2003). doi:10.1016/S0167-2789(03)00030-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 38(18), 4564–4575 (2015). doi:10.1002/mma.2869

    Article  MathSciNet  MATH  Google Scholar 

  36. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998). doi:10.1098/rspa.1998.0273

    Article  MathSciNet  MATH  Google Scholar 

  37. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1065 (1996). doi:10.1090/S0025-5718-96-00750-8

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 22, pp. 147–195. World Sci. Publ., Hackensack, NJ (2012)

  40. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012). doi:10.1137/110822839

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228(8), 2978–2992 (2009). doi:10.1016/j.jcp.2009.01.009

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, J., Yang, X.: Numerical approximation of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. B 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010). doi:10.1137/09075860X

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Yang, X.: Decoupled energy stable schemes for phase field models of two phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  46. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  47. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986). doi:10.1137/0907059

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010). doi:10.3934/dcds.2010.28.405

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011). doi:10.1137/090752675

    Article  MathSciNet  MATH  Google Scholar 

  50. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44(1), 38–68 (2010). doi:10.1007/s10915-010-9363-4

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014). doi:10.1002/cnm.2597

    Article  MathSciNet  Google Scholar 

  52. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218(1), 417–428 (2006). doi:10.1016/j.jcp.2006.02.021

    Article  MathSciNet  MATH  Google Scholar 

  53. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse interface method for simulating two phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, J., Das, S., Du, Q.: A phase field model for vesicle-substrate adhesion. J. Comput. Phys. 228, 7837–7849 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

D. Han is partially supported by NSF DMS-1312701. Alex. Brylev is partially supported by NSF DMS-1418898. X. Yang is partially supported by NSF-DMS-1200487, NSF-DMS-1418898, AFOSR-FA9550-12-1-0178, NSFC-11471372, and NSFC-11571385. Z. Tan is partially supported by the NSFC-11571385, the special project “High performance computing” of National Key Research and Development Program (No. 2016YFB0200604), the Fundamental Research Funds for the Central Universities (15lgjc17), and Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Brylev, A., Yang, X. et al. Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows. J Sci Comput 70, 965–989 (2017). https://doi.org/10.1007/s10915-016-0279-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0279-5

Keywords

Navigation