Skip to main content
Log in

Discontinuous Galerkin Methods for Relativistic Vlasov–Maxwell System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The relativistic Vlasov–Maxwell (RVM) system is a kinetic model that describes the dynamics of plasma when the charged particles move in the relativistic regime and their collisions are not important. In this paper, we formulate and investigate discontinuous Galerkin (DG) methods to solve the RVM system. When standard piecewise polynomial functions are used to define trial and test spaces, the methods conserve mass as expected. However the energy conservation does not hold due to the specific form of the total energy of the system. In order to obtain provable mass and energy conservation, we take advantage of the flexibility of DG discretizations and enrich the discrete spaces with some non-polynomial function. For the semi-discrete DG methods with standard and enriched spaces, stability and error estimates are established together with their properties in conservation. In actual implementation with the enriched space, special care is needed to reduce the loss of significance for better numerical stability. Numerical experiments, including streaming Weibel instability and wakefield acceleration, are presented to demonstrate the performance of the methods. Positivity-preserving limiter is also used in simulating wakefield acceleration to obtain physically more relevant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ayuso, B., Hajian, S.: High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system, preprint (2012)

  2. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985)

    Google Scholar 

  3. Califano, F., Pegoraro, F., Bulanov, S.V., Mangeney, A.: Kinetic saturation of the Weibel instability in a collisionless plasma. Phys. Rev. E 57(6), 7048–7059 (1998)

    Article  Google Scholar 

  4. Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system. J. Comput. Phys. 279(15), 145–173 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, Y., Gamba, I.M., Li, F., Morrison, P.J.: Discontinuous Galerkin schemes for Vlasov–Maxwell system. SIAM J. Numer. Anal. 52(2), 1017–1049 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)

    Article  Google Scholar 

  7. Ciarlet, P.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1975)

    Google Scholar 

  8. Cohen, B., Langdon, A., Hewett, D., Procassini, R.: Performance and optimization of direct implicit particle simulation. J. Comput. Phys. 81(1), 151–168 (1989)

    Article  Google Scholar 

  9. Eliasson, B.: Numerical modelling of the two-dimensional Fourier transformed Vlasov–Maxwell system. J. Comput. Phys. 190(2), 501–522 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions-theory and applications. Transp. Theor. Stat. 39(5), 387–465 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Gittelson, C., Hiptmair, R., Perugia, I.: Plane Wave Discontinuous Galerkin Methods. Isaac Newton Institute Preprint Series (2007)

  12. Huttunen, T., Monk, P., Kaipio, J.P.: Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182(1), 27–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jacobs, G., Hesthaven, J.S.: Implicit–explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning. Comput. Phys. Commun. 180(10), 1760–1767 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Markidis, S., Lapenta, G.: The energy conserving particle-in-cell method. J. Comput. Phys. 230(18), 7037–7052 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pegoraro, F., Bulanov, S.V., Califano, F., Lontano, M.: Nonlinear development of the Weibel instability and magnetic field generation in collisionless plasmas. Phys. Scr. T63, 262–265 (1996)

    Article  Google Scholar 

  17. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Suzuki, A., Shigeyama, T.: A conservative scheme for the relativistic Vlasov–Maxwell system. J. Comput. Phys. 229(5), 1643–1660 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, H.: Analysis and Applications of Runge–Kutta Discontinuous Galerkin Methods. Ph.D. dissertation, Rensselaer Polytechnic Institute (2014)

  22. Yang, H., Li, F.: Error estimates of Runge–Kutta discontinuous Galerkin methods for the Vlasov–Maxwell system. ESAIM: M2AN 49(1), 69–99 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zaki, S.I., Gardner, L.R.T., Boyd, T.J.M.: A finite element code for the simulation of one-dimensional Vlasov plasmas. i. Theory. J. Comput. Phys. 79(1), 184–199 (1988)

    Article  MATH  Google Scholar 

  24. Zaki, S.I., Boyd, T.J.M., Gardner, L.R.T.: A finite element code for the simulation of one-dimensional Vlasov plasmas. ii. Applications. J. Comput. Phys. 79(1), 200–208 (1988)

    Article  MATH  Google Scholar 

  25. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Science Foundation (Grant No. DMS-1318409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Li.

Additional information

This research is partially supported by NSF Grant DMS-1318409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, F. Discontinuous Galerkin Methods for Relativistic Vlasov–Maxwell System. J Sci Comput 73, 1216–1248 (2017). https://doi.org/10.1007/s10915-016-0332-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0332-4

Keywords

Mathematics Subject Classification