Skip to main content
Log in

The Boundary Element Method with a Fast Multipole Accelerated Integration Technique for 3D Elastostatic Problems with Arbitrary Body Forces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A line integration boundary element method (LIBEM) is proposed for three-dimensional elastostatic problems with body forces. The method is a boundary-only discretization method like the traditional boundary element method (BEM), and the boundary elements created in BEM can be used directly in the proposed method for constructing the integral lines. Finally, the body forces are computed by summing one-dimensional integrals on straight lines. Background cells can be used to cut the lines into sub-lines to compute the integrals more easily and efficiently. To further reduce the computational time of LIBEM, the fast multipole method is applied to accelerate the method for large-scale computations and the details of the fast multipole line integration method for 3D elastostatic problems are given. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Oxford University Press, Oxford (1977)

    MATH  Google Scholar 

  2. Chati, M.K., Mukherjee, S., Mukherjee, Y.X.: The boundary node method for three-dimensional linear elasticity. Int. J. Numer. Methods Eng. 46(8), 1163–1184 (1999)

    Article  MATH  Google Scholar 

  3. Li, X., Zhu, J.: A Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math. 230(1), 314–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Miao, Y., Wang, Y.-H.: An improved hybrid boundary node method in two-dimensional solids. Acta Mech. Solida Sin. 18(4), 307–315 (2005)

    Google Scholar 

  5. Miao, Y., Wang, Y.-H.: Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method. Appl. Math. Mech. 27(5), 673–681 (2006)

    Article  MATH  Google Scholar 

  6. Miao, Y., et al.: Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements. Eng. Anal. Bound. Elem. 34(9), 755–760 (2010)

    Article  MATH  Google Scholar 

  7. Miao, Y., et al.: Dual hybrid boundary node method for solving transient dynamic fracture problems. Comput. Model. Eng. Sci. (CMES) 85(6), 481–498 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, J., et al.: A boundary face method for potential problems in three dimensions. Int. J. Numer. Methods Eng. 80(3), 320–337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, F., et al.: Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng. Anal. Bound. Elem. 35(2), 244–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ingber, M.S., Mammoli, A.A., Brown, M.J.: A comparison of domain integral evaluation techniques for boundary element methods. Int. J. Numer. Methods Eng. 52(4), 417–432 (2001)

    Article  MATH  Google Scholar 

  11. Koehler, M., Yang, R., Gray, L.J.: Cell-based volume integration for boundary integral analysis. Int. J. Numer. Methods Eng. 90(7), 915–927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, W., et al.: A fast multipole method accelerated adaptive background cell-based domain integration method for evaluation of domain integrals in 3D boundary element method. Eng. Anal. Bound. Elem. 67, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  13. Nardini, D., Brebbia, C.: A new approach to free vibration analysis using boundary elements. Appl. Math. Model. 7(3), 157–162 (1983)

    Article  MATH  Google Scholar 

  14. Zhou, F., et al.: A dual reciprocity boundary face method for 3D non-homogeneous elasticity problems. Eng. Anal. Bound. Elem. 36(9), 1301–1310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neves, A., Brebbia, C.: The multiple reciprocity boundary element method in elasticity: a new approach for transforming domain integrals to the boundary. Int. J. Numer. Methods Eng. 31(4), 709–727 (1991)

    Article  MATH  Google Scholar 

  16. Ochiai, Y., Kobayashi, T.: Initial strain formulation without internal cells for elastoplastic analysis by triple-reciprocity BEM. Int. J. Numer. Methods Eng. 50(8), 1877–1892 (2001)

    Article  MATH  Google Scholar 

  17. Ochiai, Y.: Two-dimensional unsteady heat conduction analysis with heat generation by triple-reciprocity BEM. Int. J. Numer. Methods Eng. 51(2), 143–157 (2001)

    Article  MATH  Google Scholar 

  18. Ochiai, Y.: Three-dimensional heat conduction analysis of inhomogeneous materials by triple-reciprocity boundary element method. Eng. Anal. Bound. Elem. 51, 101–108 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ochiai, Y.: Three-dimensional thermo-elastoplastic analysis by triple-reciprocity boundary element method. Eng. Anal. Bound. Elem. 35(3), 478–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, X.-W.: The radial integration method for evaluation of domain integrals with boundary-only discretization. Eng. Anal. Bound. Elem. 26(10), 905–916 (2002)

    Article  MATH  Google Scholar 

  21. Gao, X.-W.: Evaluation of regular and singular domain integrals with boundary-only discretization—theory and Fortran code. J. Comput. Appl. Math. 175(2), 265–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fata, Nintcheu: Treatment of domain integrals in boundary element methods. Appl. Numer. Math. 62(6), 720–735 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fata, S.N.: Boundary integral approximation of volume potentials in three-dimensional linear elasticity. J. Comput. Appl. Math. 242, 275–284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hematiyan, M.: A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM. Comput. Mech. 39(4), 509–520 (2007)

    Article  MATH  Google Scholar 

  25. Hematiyan, M.: Exact transformation of a wide variety of domain integrals into boundary integrals in boundary element method. Commun. Numer. Methods Eng. 24(11), 1497–1521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khosravifard, A., Hematiyan, M.R.: A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Eng. Anal. Bound. Elem. 34(1), 30–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hematiyan, M., Khosravifard, A., Liu, G.: A background decomposition method for domain integration in weak-form meshfree methods. Comput. Struct. 142, 64–78 (2014)

    Article  Google Scholar 

  28. Liu, Y.: A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems. Int. J. Numer. Methods Eng. 65(6), 863–881 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Nishimura, N.: The fast multipole boundary element method for potential problems: a tutorial. Eng. Anal. Bound. Elem. 30(5), 371–381 (2006)

    Article  MATH  Google Scholar 

  30. Wang, H., Yao, Z.: A new fast multipole boundary element method for large scale analysis of mechanical properties in 3D particle-reinforced composites. Comput. Model. Eng. Sci. 7(1), 85–95 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Wang, H., Yao, Z.: A rigid-fiber-based boundary element model for strength simulation of carbon nanotube reinforced composites. Comput. Model. Eng. Sci. (CMES) 29(1), 1–13 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Tanaka, M.: Adaptive spatial decomposition in fast multipole method. J. Comput. Phys. 226(1), 17–28 (2007)

    Article  MATH  Google Scholar 

  33. Of, G., Steinbach, O., Urthaler, P.: Fast evaluation of volume potentials in boundary element methods. SIAM J. Sci. Comput. 32(2), 585–602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ding, J., Ye, W., Gray, L.: An accelerated surface discretization-based BEM approach for non-homogeneous linear problems in 3-D complex domains. Int. J. Numer. Methods Eng. 63(12), 1775–1795 (2005)

    Article  MATH  Google Scholar 

  35. Steinbach, O., Tchoualag, L.: Fast Fourier transform for efficient evaluation of Newton potential in BEM. Appl. Numer. Math. 81, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Q., Miao, Y., Zheng, J.: The hybrid boundary node method accelerated by fast multipole expansion technique for 3D elasticity. Comput. Model. Eng. Sci. 70(2), 123–151 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Fu, Y., et al.: A fast solution method for three-dimensional many-particle problems of linear elasticity. Int. J. Numer. Methods Eng. 42(7), 1215–1229 (1998)

    Article  MATH  Google Scholar 

  38. Wang, Q., Miao, Y., Zhu, H.: A fast multipole hybrid boundary node method for composite materials. Comput. Mech. 51(6), 885–897 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Q., et al.: An O (N) fast multipole hybrid boundary node method for 3D elasticity. Comput. Mater. Contin. 28(1), 1–25 (2012)

    MathSciNet  Google Scholar 

  40. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support for the project from the National Natural Science Foundation of China (No. 51609181), National Natural Science Funds for Excellent Young Scholars (No. 51322905) and the National Key Research and Development Program of China (No. 2016YFC0401900) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhou, W., Cheng, Y. et al. The Boundary Element Method with a Fast Multipole Accelerated Integration Technique for 3D Elastostatic Problems with Arbitrary Body Forces. J Sci Comput 71, 1238–1264 (2017). https://doi.org/10.1007/s10915-016-0335-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0335-1

Keywords

Navigation