Skip to main content
Log in

Exact Boundary Condition for Semi-discretized Schrödinger Equation and Heat Equation in a Rectangular Domain

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A convolution type exact/transparent boundary condition is proposed for simulating a semi-discretized linear Schrödinger equation on a rectangular computational domain. We calculate the kernel functions for a single source problem, and subsequently those over the rectangular domain. Approximate kernel functions are pre-computed numerically from discrete convolutionary equations. With a Crank–Nicolson scheme for time integration, the resulting approximate boundary conditions effectively suppress boundary reflections, and resolve the corner effect. The proposed boundary treatment, with a parameter modified, applies readily to a semi-discretized heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greengard, L., Lin, P.: On the Numerical Solution of the Heat Equation in Unbounded Domains (Part I). Tech. Note 98002, Courant Mathematics and Computing Laboratory, New York University (1998)

  2. Wu, X., Zhang, J.: High-order local absorbing boundary conditions for heat equation in unbounded domains. J. Comput. Math 29, 74 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput 21(1), 255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, X., Sun, Z.: Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math 50, 261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, A., Ehrhardt, M., Sofronov, I.: Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun. Math. Sci 1(3), 501 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hagstrom, T., Warburton, T.: A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. Wave Motion 39, 327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal 37, 1138 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grote, M., Keller, J.: Nonreflecting boundary conditions for time dependent scattering. J. Comput. Phys. 52, 127 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Baskakov, V., Popov, A.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14, 123 (1991)

    Article  MathSciNet  Google Scholar 

  10. Han, H., Huang, Z.: Exact artificial boundary conditions for the Schrödinger equation in \(\mathbb{R}^2\). Commun. Math. Sci. 2(1), 79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, A., Ehrhardt, M., Schulte, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci 10(3), 889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, S., Greengard, L.: Nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Commun. Pure. Appl. Math 61, 261 (2008)

    Article  MATH  Google Scholar 

  13. Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comput. 73, 1779 (2004)

    Article  MATH  Google Scholar 

  14. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33(2), 1008 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: discretization and numerical results. Numer. Math. 125(2), 191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H., Wu, X., Zhang, J.: Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary. Comput. Phys. Commun. 185, 1606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bian, L., Ji, S., Pang, G., Tang, S.: Accurate boundary treatment for transient Schrödinger equation under polar coordinates. Comput. Math. Appl. 71, 479 (2016)

    Article  MathSciNet  Google Scholar 

  18. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729 (2008)

    MathSciNet  Google Scholar 

  19. Han, H., Huang, Z.: Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Math. Appl. 44, 655 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Q., Han, H., Zhang, J., Zheng, C.: Numerical solution of the two-dimensional nonlocal wave equation on unbounded domain, preprint

  21. Pang, G., Tang, S.: Time history kernel functions for square lattice. Comput. Mech. 48, 699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katsura, S., Inawashiro, S.: Lattice Greens functions for the rectangular and the square lattices at arbitrary points. J. Math. Phys. 12, 1622 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, S., Hou, T., Liu, W.: A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J. Comput. Phys. 213(1), 57–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Tang.

Additional information

This research is partially supported by NSFC under Grant Nos. 11272009, 11502208 and 11521202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, G., Yang, Y. & Tang, S. Exact Boundary Condition for Semi-discretized Schrödinger Equation and Heat Equation in a Rectangular Domain. J Sci Comput 72, 1–13 (2017). https://doi.org/10.1007/s10915-016-0344-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0344-0

Keywords