Abstract
In this article, we study the residual-based a posteriori error estimates of the two-grid finite element methods for the second order nonlinear elliptic boundary value problems. Computable upper and lower bounds on the error in the \(H^1\)-norm are established. Numerical experiments are also provided to illustrate the performance of the proposed estimators.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)
Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Axelsson, O., Layton, W.: A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal. 33, 2359–2374 (1996)
Babuška, I., Aziz, A.K.: Foundations of the finite element method. In: Aziz, A.K. (ed.) The Mathmetical Foundation of the Finite Element Method with Appications to Partial Differential Equations, pp. 3–362. Academic Press, New York (1972)
Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)
Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)
Bangerth, W., and Rannacher, R.: Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics. ETH-Z\(\ddot{\rm u}\)rich, Birkh\(\ddot{\rm a}\)user, Basel (2003)
Bergam, A., Mghazli, Z., Verfürth, R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95, 599–624 (2003)
Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)
Bi, C., Ginting, V.: A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. Numer. Math. 114, 107–132 (2009)
Bi, C., Ginting, V.: Two-grid discontinuous Galerkin method for quasi-linear elliptic problems. J. Sci. Comput. 49, 311–331 (2011)
Bi, C., Ginting, V.: A posteriori error estimates of discontinuous Galerkin method for nonmonotone quasi-linear elliptic problems. J. Sci. Comput. 55, 659–687 (2013)
Bi, C., Ginting, V.: Global superconvergence and a posteriori error estimates of finite element method for second-order quasilinear elliptic problems. J. Comput. Appl. Math. 260, 78–90 (2014)
Bi, C., Ginting, V.: Finite volume element method for second-order quasilinear elliptic problems. IMA J. Numer. Anal. 31, 1062–1089 (2011)
Bi, C., Wang, C.: A posteriori error estimates of finite volume element method for second-order quasilinear elliptic problems. Inter. J. Numer. Anal. Model. 13, 22–40 (2016)
Bi, C., Wang, C., Lin, Y.: A posteriori error estimates of \(hp\)-discontinuous Galerkin method for strongly nonlinear elliptic problems. Comput. Meth. Appl. Mech. Eng. 297, 140–166 (2015)
Bi, C., Wang, C., Lin, Y.: Pointwise error estimates and two-grid algorithms of discontinuous Galerkin method for strongly nonlinear elliptic problems. J. Sci. Comput. 67, 153–175 (2016)
Brenner, S., Scott, R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002)
Carstensen, C., Lazarov, R., Tomov, S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)
Casas, E., Dhamo, V.: Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. Numer. Math. 117, 115–145 (2011)
Chatzipantelidis, P., Ginting, V., Lazarov, R.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005)
Chen, Z.: On the existence, uniqueness and convergence of nonlinear mixed finite element methods. Mat. Apl. Comput. 8, 241–258 (1989)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)
Demlow, A.: Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM J. Numer. Anal. 44, 494–514 (2006)
Douglas Jr., J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)
Gudi, T., Nataraj, N., Pani, A.K.: hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109, 233–268 (2008)
Gudi, T., Nataraj, N., Pani, A.K.: An hp-local discontinuous Galerkin method for some quasi-linear elliptic boundary value problems of non-monotone type. Math. Comput. 77, 731–756 (2008)
Gudi, T., Pani, A.K.: Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45, 163–192 (2007)
Guo, H., Zhang, Z., Zhao, R.: Superconvergent two-grid methods for elliptic eigenvalue problems. J. Sci. Comput. 70, 125–148 (2017)
Liu, L., Křížek, M., Neittaanmäki, P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 41, 467–478 (1996)
Liu, L., Liu, T., Křížek, M., Lin, T., Zhang, S.H.: Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type. SIAM J. Numer. Anal. 42, 1729–1744 (2004)
Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1184 (1995)
Milner, F.A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 1–22 (1985)
Neittaanmäki, P., Repin, S.: Reliable Methods for Mathematical Modelling. Error Control and a Posteriori Estimates. Elsevier, New York (2004)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary condition. Math. Comput. 54, 483–493 (1990)
Utnes, T.: Two-grid finite element formulations of the incompressible Navier–Stokes equation. Commun. Numer. Methods Eng. 34, 675–684 (1997)
Verfürth, R.: A posteriori error estimates for nonlinear problems. Finite element discretization of elliptic equations. Math. Comput. 62, 445–475 (1994)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)
Verfürth, R.: A posteriori error estimates for nonlinear problems. \(L^r(0, T;L^{\rho }(\Omega ))\) error estimates for finite element discretizations of parabolic equations. Math. Comput. 67, 1335–1360 (1998)
Wu, L., Allen, M.B.: Two-grid method for mixed finite-element solution of coupled reaction-diffusion systems. Numer. Methods PDE 15, 589–604 (1999)
Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)
Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite elliptic problems. SIAM J. Numer. Anal. 29, 303–319 (1992)
Xu, J.: A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (1999)
Acknowledgements
The authors would like to thank an anonymous referee for his (her) valuable suggestions leading to an improvement of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of C. Bi was partially supported by the National Science Foundation of China under Grant 11571297 and Shandong Province Natural Science Foundation under Grant ZR2014AM003. The research of C. Wang was partially supported by the National Science Foundation of China under Grant 11101311. The research of Y. Lin was partially supported by GRF 15301714 of HKSAR.
About this article
Cite this article
Bi, C., Wang, C. & Lin, Y. A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems. J Sci Comput 74, 23–48 (2018). https://doi.org/10.1007/s10915-017-0422-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0422-y