Abstract
Hyperbolic moment equations based on Burnett’s expansion of the distribution function are derived for the Boltzmann equation with linearized collision operator. Boundary conditions are equipped for these models, and it is proven that the number of boundary conditions is correct for a large class of moment models. A new second-order numerical scheme is proposed for solving these moment equations, and the new method is suitable for both ordered- and full-moment theories. Numerical experiments are carried out for both one- and two-dimensional problems to show the performance of the moment methods.


















Similar content being viewed by others
References
Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford (1994)
Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40(1), 382–435 (1936)
Cai, Z.: Numerical simulation of microflows with moment method. In: Karayiannis, T., Konig, C.S., Balabani, S. (eds.) 4th Micro and Nano Flow Conference 2014: Proceedings, p. ID218, Brunel University (2014)
Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)
Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75(5), 2001–2023 (2015)
Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann–BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)
Cai, Z., Li, R., Qiao, Z.: Globally hyperbolic regularized moment method with applications to microflow simulation. Comput. Fluids 81, 95–109 (2013)
Cai, Z., Torrilhon, M.: Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models. J. Comput. Phys. 295, 617–643 (2015)
Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)
Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74(6), 483–548 (1995)
Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20(18), 6505–6517 (1987)
Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016)
Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. B Fluids 28(3), 387–396 (2009)
Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: heat transfer in a gas confined by two plane-parallel surfaces. Ann. Nucl. Energy 86, 45–54 (2015)
Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)
Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)
John, B., Gu, X., Emerson, D.: Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel DSMC study. Comput. Fluids 45(1), 197–201 (2011)
John, B., Gu, X.J., Emerson, D.R.: Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transf. 58, 287–303 (2010)
Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298 (1970)
Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)
Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878)
Rana, A.S., Mohammadzadeh, A., Struchtrup, H.: A numerical study of the heat transfer through a rarefied gas confined in a microcavity. Contin. Mech. Thermodyn. 27(3), 433–446 (2015)
Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005)
Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)
Torrilhon, M.: Convergence study of moment approximations for boundary value problems of the Boltzmann-BGK equation. Commun. Comput. Phys. 18(3), 529–557 (2015)
Torrilhon, M., Struchtrup, H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227(3), 1982–2011 (2008)
Yong, W.-A.: Boundary conditions for hyperbolic systems with stiff source terms. Indiana Univ. Math. J. 48(1), 85–114 (1999)
Acknowledgements
We thank Dr. Xiaojun Gu and Dr. Anirudh Rana for providing DSMC results for the two-dimensional problems. This research was supported by Humboldt Research Fellowship for Postdoctoral Researchers provided by Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Proof of Theorem 1
Lemma 3
For \(\varvec{\xi }= (\xi _1, \xi _2, \xi _3)^T\) and \(\varvec{\xi }^* = (\xi _1, \xi _2, -\xi _3)^T\), it holds that
Proof
Obviously \(|\varvec{\xi }| = |\varvec{\xi }^*|\). Thus we only need to prove \(Y_l^m(\varvec{\xi }/ |\varvec{\xi }|) = (-1)^{l+m} Y_l^m(\varvec{\xi }^* / |\varvec{\xi }|)\). If \(\varvec{\xi }/ |\varvec{\xi }| = (\sin \theta \cos \varphi , \sin \theta \sin \varphi , \cos \theta )^T\), then \(\varvec{\xi }^* / |\varvec{\xi }| = (\sin \theta ^* \cos \varphi , \sin \theta ^* \sin \varphi , \cos \theta ^*)^T\) with \(\theta ^* = \pi - \theta \). According to (3.4), it is sufficient to prove \(P_l^m(\cos \theta ) = (-1)^{l+m} P_l^m(\cos \theta ^*) = (-1)^{l+m} P_l^m(-\cos \theta )\). Since \((x^2-1)^l\) is an even function, its \((l+m)\)th order derivative is even/odd if \(l+m\) is even/odd. Thus according to (3.5), the Legendre function \(P_l^m(x)\) is even/odd if \(l+m\) is even/odd, which completes the proof. \(\square \)
Proof of Theorem 1
When \(\varvec{n}= \varvec{n}_z\), the conclusion is exactly the same as Lemma 3. If \(\varvec{n}\ne \varvec{n}_z\), then
Using
we immediately have \(\varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}\big ) = \varvec{\eta }_{\varvec{n}}(\varvec{\xi }) - 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}_z\). Therefore
and for any vector \(\varvec{n}_z^{\perp }\) perpendicular to \(\varvec{n}_z\),
Similar as (6.3), we have \(2\varvec{n}_z \cdot (\varvec{n}_z - \varvec{n}) = |\varvec{n}_z - \varvec{n}|^2\), and therefore
Inserting the above equation into (6.4), we get
Thus (3.37) is a direct result of (6.5), (6.7) and Lemma 3. \(\square \)
Appendix 2: Derivation of the Boundary Condition for the Velocity
In this section, we derive the boundary condition (3.43a). For simplicity, the parameters t and \(\varvec{x}\) are omitted. In (3.38), we let \((l,m,n) = (1,0,0)\), and get a linear polynomial \([(\varvec{c}- \varvec{v}^W) \cdot \varvec{n}] / \sqrt{RT}\). Let \(p(\varvec{c})\) be this polynomial in (3.34), we have
By the definition of \(\rho ^W\) in (3.33), the right-hand side of the above equation is zero. The left hand side equals \(\rho (\varvec{v}- \varvec{v}^W) \cdot \varvec{n}\). Thus we have \(\varvec{v}\cdot \varvec{n}= \varvec{v}^W \cdot \varvec{n}\).
Appendix 3: Proof of Theorem 2
The proof of Theorem 2 is given in this section. We first assume \(\varvec{n}= (0,0,1)^T\) and study the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\). Define the operator \(\tilde{\Pi }_k^{[\varvec{\alpha }]}\), \(k = 1,2,3\) as
and function spaces
Obviously \(\mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]} = \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} \oplus \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and we have the following lemma:
Lemma 4
If \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). If \(f \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\).
Proof
This lemma is a direct result of the recursion relation of the basis functions:
If \(l+m\) is odd, the right-hand side shows that the above function is the linear combination of \(\psi _{l'm'n'}\) with \(l'+m'\) being even. Similarly, when \(l+m\) is even, the above function is the linear combination of \(\psi _{l'm'n'}\) with \(l'+m'\) being odd. Since the operator \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} g\) becomes a truncation of g when the function g is expanded into series with basis function \(\psi _{lmn}\), the result of the lemma is obtained immediately. \(\square \)
This lemma inspires us to define \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}: \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} \rightarrow \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) as the restriction of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) on \(\mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and define \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}: \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \rightarrow \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) as the restriction of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) on \(\mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). Below we consider \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) as a linear transformation on \(\mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and study the distribution of its eigenvalues. We start from proving that \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) is injective:
Lemma 5
If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\) and \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\) if and only if \(f \ne 0\).
Proof
Obviously \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\) implies \(f \ne 0\). Now we assume \(f \ne 0\) and has the following expansion:
Let \(l_0\) be the minimum l such that \(f_{lmn} \ne 0\) holds for some m and n, and let \(n_0\) be the minimum n such that \(f_{l_0 m n} \ne 0\) holds for some m. Thus for all \(l' < l_0\) and \(n' < n_0\), \(f_{l'mn} = 0\) and \(f_{l_0mn'} = 0\) for every available m and n, and there exists an \(m_0\) such that \(f_{l_0 m_0 n_0} \ne 0\). Since \(l_0 + m_0\) is odd, we have \(l_0 \geqslant 1\) and \(|m_0| < l_0\). Let \(\mu = 0\) in (3.27), and we obtain
From \(N_{l_0-1} \geqslant N_{l_0}\) and \(|m_0| < l_0\), we know that \((l_0-1, m_0, n_0) \in \mathcal {I}_{L,\varvec{N}}\). According to the definition of \((l_0, m_0, n_0)\), one easily finds that in the above sum, the coefficient of \(\psi _{l_0-1,m_0,n_0}\) is \(\sqrt{2(n_0 + l_0) + 1} \gamma _{-l_0,m_0}^0 f_{l_0 m_0 n_0}\). When \(l_0 + m_0\) is odd, \(\gamma _{-l_0,m_0}^0 \ne 0\), and therefore \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\). \(\square \)
Lemma 6
If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) has only positive eigenvalues.
Proof
For any \(f, g \in \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and
define
According to the definition of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) (3.15), we have
Using the orthogonality (3.6), one can easily find that the second integral in the above equation equals \(\mathfrak {m}^{-1} \overline{g_{lmn}}\). By replacing f with its series form, we get
Using the same method, one can show that \(\langle f, \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 g \rangle ^{[\varvec{\alpha }]}\) also equals the right-hand side of the above equation. Thus
If \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(g \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), Eq. (6.17) becomes \(\langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, g \rangle ^{[\varvec{\alpha }]} = \langle f, \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} g \rangle ^{[\varvec{\alpha }]}\). If \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f = \lambda f\) and \(f \ne 0\), then \(\langle f, \lambda f \rangle ^{[\varvec{\alpha }]} = \langle f, \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]} = \langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]}\). By Lemma 5, when \(f \ne 0\), \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\). Hence \(\lambda = \langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]} / \langle f, f \rangle ^{[\varvec{\alpha }]} > 0\). \(\square \)
Theorem 7
\(\lambda \) is a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M if and only if \(\lambda ^2\) is an eigenvalue of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) with multiplicity M.
Proof
Suppose \(\lambda \ne 0\) and \(\{ f_1, \ldots , f_M \} \subset \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are linearly independent and satisfy \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f_k = \lambda f_k\). For any \(k = 1, \ldots , M\), there exist unique \(f_k^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(f_k^e \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) such that \(f_k = f_k^o + f_k^e\). Thus
Therefore \(f_k^o = \lambda ^{-1} \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^e\), \(f_k^e = \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o\), which yields that
If there exists \((\alpha _1, \ldots , \alpha _M)^T \in \mathbb {C}^M\) such that \(\alpha _1 f_1^o + \cdots + \alpha _M f_M^o = 0\), then
Since \(f_1, \ldots , f_M\) are linearly independent, \(\alpha _1 = \cdots = \alpha _M = 0\). Thus \(f_1^o, \ldots , f_M^o\) are also linearly independent, and therefore \(\lambda ^2\) is an eigenvalue of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) with multiplicity at least M. If there exists \(f_{M+1}^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) such that \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o = \lambda ^2 f_{M+1}^o\), then
Therefore \(f_{M+1}^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\) is a linear combination of \(f_1, \ldots , f_M\), and then \(f_{M+1}^o\) is a linear combination of \(f_1^o, \ldots , f_M^o\). This shows that the multiplicity of the eigenvalue \(\lambda ^2\) is M.
Now we assume that \(\{f_1^o, \ldots , f_M^o\} \subset \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are linearly independent and fulfill
Equation (6.21) shows that \(f_k^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o\), \(k=1,\ldots ,M\) are eigenfunctions of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with eigenvalue \(\lambda \). Obviously these functions are also linearly independent, and therefore \(\lambda \) is an eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity at least M. If \(f_{M+1} = f_{M+1}^o + f_{M+1}^e\) with \(f_{M+1}^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(f_{M+1}^e \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) satisfies \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f_{M+1} = \lambda f_{M+1}\), similar as (6.19), we have \(f_{M+1}^e = \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\) and \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o = \lambda ^2 f_{M+1}^o\). Thus there exist \(\alpha _1, \ldots , \alpha _M\) such that \(f_{M+1}^o = \alpha _1 f_1^o + \cdots + \alpha _M f_M^o\), which gives
This shows that the multiplicity of the eigenvalue \(\lambda \) is M. \(\square \)
A direct corollary of the above theorem is
Corollary 8
If \(\lambda \) is a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M, then \(-\lambda \) is also a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M.
Theorem 9
If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then the multiplicity of zero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) is \(\dim \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]} - 2 \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\).
Proof
By Lemma 6, we can assume that all eigenvalues of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are \(\lambda _1^2, \lambda _2^2, \ldots , \lambda _{M_o}^2\), where \(M_o = \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). Using Theorem 7, we know that \(\pm \lambda _1, \ldots , \pm \lambda _M\) are all the nonzero eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\). Thus the conclusion of the theorem follows naturally. \(\square \)
Corollary 8 and Theorem 9 show that the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) are symmetrically distributed with respect to the origin, and the number of positive or negative eigenvalues are the same as the number of odd basis functions. The definition of \(\tilde{\Pi }_k^{[\varvec{\alpha }]}\) (6.9) shows that \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} = \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3 - v_3 \mathrm {Id}\). Hence the distribution of eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\) can be described as follows:
Corollary 10
Let \(M = \dim \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(M_o = \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and suppose \(\lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _M\) are all the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\). If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then it holds that
From (6.11), it is clear that the eigenvalues of \((RT)^{-1/2} \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3\) is independent of \(\varvec{\alpha }\). Thus, through a rotation in the velocity space, Theorem 2 is naturally obtained.
Rights and permissions
About this article
Cite this article
Cai, Z., Torrilhon, M. Numerical Simulation of Microflows Using Moment Methods with Linearized Collision Operator. J Sci Comput 74, 336–374 (2018). https://doi.org/10.1007/s10915-017-0442-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0442-7