Skip to main content
Log in

Numerical Simulation of Microflows Using Moment Methods with Linearized Collision Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Hyperbolic moment equations based on Burnett’s expansion of the distribution function are derived for the Boltzmann equation with linearized collision operator. Boundary conditions are equipped for these models, and it is proven that the number of boundary conditions is correct for a large class of moment models. A new second-order numerical scheme is proposed for solving these moment equations, and the new method is suitable for both ordered- and full-moment theories. Numerical experiments are carried out for both one- and two-dimensional problems to show the performance of the moment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  2. Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40(1), 382–435 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, Z.: Numerical simulation of microflows with moment method. In: Karayiannis, T., Konig, C.S., Balabani, S. (eds.) 4th Micro and Nano Flow Conference 2014: Proceedings, p. ID218, Brunel University (2014)

  4. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75(5), 2001–2023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann–BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Li, R., Qiao, Z.: Globally hyperbolic regularized moment method with applications to microflow simulation. Comput. Fluids 81, 95–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Torrilhon, M.: Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models. J. Comput. Phys. 295, 617–643 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)

    Article  Google Scholar 

  10. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20(18), 6505–6517 (1987)

    Article  MATH  Google Scholar 

  12. Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. B Fluids 28(3), 387–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: heat transfer in a gas confined by two plane-parallel surfaces. Ann. Nucl. Energy 86, 45–54 (2015)

    Article  Google Scholar 

  15. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. John, B., Gu, X., Emerson, D.: Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel DSMC study. Comput. Fluids 45(1), 197–201 (2011)

    Article  MATH  Google Scholar 

  18. John, B., Gu, X.J., Emerson, D.R.: Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transf. 58, 287–303 (2010)

    Article  Google Scholar 

  19. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878)

    Article  MATH  Google Scholar 

  22. Rana, A.S., Mohammadzadeh, A., Struchtrup, H.: A numerical study of the heat transfer through a rarefied gas confined in a microcavity. Contin. Mech. Thermodyn. 27(3), 433–446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Torrilhon, M.: Convergence study of moment approximations for boundary value problems of the Boltzmann-BGK equation. Commun. Comput. Phys. 18(3), 529–557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Torrilhon, M., Struchtrup, H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227(3), 1982–2011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yong, W.-A.: Boundary conditions for hyperbolic systems with stiff source terms. Indiana Univ. Math. J. 48(1), 85–114 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaojun Gu and Dr. Anirudh Rana for providing DSMC results for the two-dimensional problems. This research was supported by Humboldt Research Fellowship for Postdoctoral Researchers provided by Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Cai.

Appendices

Appendix 1: Proof of Theorem 1

Lemma 3

For \(\varvec{\xi }= (\xi _1, \xi _2, \xi _3)^T\) and \(\varvec{\xi }^* = (\xi _1, \xi _2, -\xi _3)^T\), it holds that

$$\begin{aligned} \psi _{lmn}(\varvec{\xi }) = (-1)^{l+m}\psi _{lmn}(\varvec{\xi }^*). \end{aligned}$$
(6.1)

Proof

Obviously \(|\varvec{\xi }| = |\varvec{\xi }^*|\). Thus we only need to prove \(Y_l^m(\varvec{\xi }/ |\varvec{\xi }|) = (-1)^{l+m} Y_l^m(\varvec{\xi }^* / |\varvec{\xi }|)\). If \(\varvec{\xi }/ |\varvec{\xi }| = (\sin \theta \cos \varphi , \sin \theta \sin \varphi , \cos \theta )^T\), then \(\varvec{\xi }^* / |\varvec{\xi }| = (\sin \theta ^* \cos \varphi , \sin \theta ^* \sin \varphi , \cos \theta ^*)^T\) with \(\theta ^* = \pi - \theta \). According to (3.4), it is sufficient to prove \(P_l^m(\cos \theta ) = (-1)^{l+m} P_l^m(\cos \theta ^*) = (-1)^{l+m} P_l^m(-\cos \theta )\). Since \((x^2-1)^l\) is an even function, its \((l+m)\)th order derivative is even/odd if \(l+m\) is even/odd. Thus according to (3.5), the Legendre function \(P_l^m(x)\) is even/odd if \(l+m\) is even/odd, which completes the proof. \(\square \)

Proof of Theorem 1

When \(\varvec{n}= \varvec{n}_z\), the conclusion is exactly the same as Lemma 3. If \(\varvec{n}\ne \varvec{n}_z\), then

$$\begin{aligned} \varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2\big (\varvec{\xi }\cdot \varvec{n}\big ) \varvec{n}\big )&= \varvec{\xi }- 2\big (\varvec{\xi }\cdot \varvec{n}\big ) \varvec{n}- \frac{2\big ( \varvec{\xi }- 2\big (\varvec{\xi }\cdot \varvec{n}\big ) \varvec{n}\big ) \cdot \big (\varvec{n}_z-\varvec{n}\big )}{\big |\varvec{n}_z - \varvec{n}\big |^2} \big (\varvec{n}_z - \varvec{n}\big ) \nonumber \\&= \varvec{\eta }_{\varvec{n}} (\varvec{\xi }) - 2\big (\varvec{\xi }\cdot \varvec{n}\big ) \varvec{n}+ \frac{4\big (\varvec{\xi }\cdot \varvec{n}\big )\big [\varvec{n}\cdot \big (\varvec{n}_z - \varvec{n}\big )\big ]}{\big |\varvec{n}_z - \varvec{n}\big |^2} \big (\varvec{n}_z - \varvec{n}\big ). \end{aligned}$$
(6.2)

Using

$$\begin{aligned} 2\varvec{n}\cdot (\varvec{n}_z-\varvec{n}) = 2(\varvec{n}\cdot \varvec{n}_z) - 2 = -\left| \varvec{n}_z\right| ^2 + 2(\varvec{n}\cdot \varvec{n}_z) - \left| \varvec{n}\right| ^2 = -\left| \varvec{n}_z - \varvec{n}\right| ^2, \end{aligned}$$
(6.3)

we immediately have \(\varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}\big ) = \varvec{\eta }_{\varvec{n}}(\varvec{\xi }) - 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}_z\). Therefore

$$\begin{aligned} \varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}\big ) \cdot \varvec{n}_z = \varvec{\eta }_{\varvec{n}}(\varvec{\xi }) \cdot \varvec{n}_z - 2(\varvec{\xi }\cdot \varvec{n}), \end{aligned}$$
(6.4)

and for any vector \(\varvec{n}_z^{\perp }\) perpendicular to \(\varvec{n}_z\),

$$\begin{aligned} \varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}\big ) \cdot \varvec{n}_z^{\perp } = \varvec{\eta }_{\varvec{n}}(\varvec{\xi }) \cdot \varvec{n}_z^{\perp }. \end{aligned}$$
(6.5)

Similar as (6.3), we have \(2\varvec{n}_z \cdot (\varvec{n}_z - \varvec{n}) = |\varvec{n}_z - \varvec{n}|^2\), and therefore

$$\begin{aligned} \varvec{\eta }_{\varvec{n}}(\varvec{\xi }) \cdot \varvec{n}_z = \varvec{\xi }\cdot \varvec{n}_z - \varvec{\xi }\cdot (\varvec{n}_z - \varvec{n}) = \varvec{\xi }\cdot \varvec{n}. \end{aligned}$$
(6.6)

Inserting the above equation into (6.4), we get

$$\begin{aligned} \varvec{\eta }_{\varvec{n}} \big ( \varvec{\xi }- 2(\varvec{\xi }\cdot \varvec{n}) \varvec{n}\big ) \cdot \varvec{n}_z = -\varvec{\eta }_{\varvec{n}}(\varvec{\xi }) \cdot \varvec{n}_z. \end{aligned}$$
(6.7)

Thus (3.37) is a direct result of (6.5), (6.7) and Lemma 3. \(\square \)

Appendix 2: Derivation of the Boundary Condition for the Velocity

In this section, we derive the boundary condition (3.43a). For simplicity, the parameters t and \(\varvec{x}\) are omitted. In (3.38), we let \((l,m,n) = (1,0,0)\), and get a linear polynomial \([(\varvec{c}- \varvec{v}^W) \cdot \varvec{n}] / \sqrt{RT}\). Let \(p(\varvec{c})\) be this polynomial in (3.34), we have

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}) \,\mathrm {d}\varvec{c}\\&\quad ={} \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}< 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}) \,\mathrm {d}\varvec{c}+ \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}> 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}) \,\mathrm {d}\varvec{c}\\&\quad ={} \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}< 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \left( \chi \mathcal {M}^W(\varvec{c}) + (1-\chi ) \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}^*) \right) \,\mathrm {d}\varvec{c}\\&\qquad -\int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}< 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}^*) \,\mathrm {d}\varvec{c}\\&\quad ={} -\chi \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}< 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \left( \mathcal {M}^W(\varvec{c}) + \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}^*) \right) \,\mathrm {d}\varvec{c}\\&\quad ={} -\chi \frac{\rho ^W}{\mathfrak {m}(2\pi R T^W)^{3/2}} \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}< 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \exp \left( -\frac{\left| \varvec{c}-\varvec{v}^W\right| ^2}{2R T^W} \right) \,\mathrm {d}\varvec{c}\\&\qquad + \chi \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}> 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}) \,\mathrm {d}\varvec{c}\\&\quad ={} -\chi \left( \frac{\rho ^W}{\mathfrak {m}} \sqrt{\frac{RT^W}{2\pi }} - \int _{\left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}> 0} \left[ \left( \varvec{c}- \varvec{v}^W\right) \cdot \varvec{n}\right] \tilde{f}^{[\varvec{\alpha }]}(\varvec{c}) \,\mathrm {d}\varvec{c}\right) . \end{aligned} \end{aligned}$$
(6.8)

By the definition of \(\rho ^W\) in (3.33), the right-hand side of the above equation is zero. The left hand side equals \(\rho (\varvec{v}- \varvec{v}^W) \cdot \varvec{n}\). Thus we have \(\varvec{v}\cdot \varvec{n}= \varvec{v}^W \cdot \varvec{n}\).

Appendix 3: Proof of Theorem 2

The proof of Theorem 2 is given in this section. We first assume \(\varvec{n}= (0,0,1)^T\) and study the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\). Define the operator \(\tilde{\Pi }_k^{[\varvec{\alpha }]}\), \(k = 1,2,3\) as

$$\begin{aligned} \left( \tilde{\Pi }_k^{[\varvec{\alpha }]} f\right) (\varvec{c}) = (\Pi _k f)(\varvec{c}) - v_k f(\varvec{c}) = (c_k - v_k) f(\varvec{c}), \end{aligned}$$
(6.9)

and function spaces

$$\begin{aligned} \begin{aligned} \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}&= \mathrm {span} \left\{ \psi _{lmn} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) \,\Bigg |\, (l,m,n) \in \mathcal {I}_{L,\varvec{N}} \text { and } l+m \text { is odd} \right\} , \\ \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}&= \mathrm {span} \left\{ \psi _{lmn} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) \,\Bigg |\, (l,m,n) \in \mathcal {I}_{L,\varvec{N}} \text { and } l+m \text { is even} \right\} . \end{aligned} \end{aligned}$$
(6.10)

Obviously \(\mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]} = \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} \oplus \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and we have the following lemma:

Lemma 4

If \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). If \(f \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\).

Proof

This lemma is a direct result of the recursion relation of the basis functions:

$$\begin{aligned} \begin{aligned}&(c_3 - v_3) \psi _{lmn} \left( \frac{\varvec{c}-\varvec{v}}{\sqrt{RT}} \right) \\&\quad =\sqrt{RT} \Bigg [ \sqrt{2(n+l)+3} \gamma _{l+1,m}^0 \psi _{l+1,m,n} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) - \sqrt{2n} \gamma _{l+1,m}^0 \psi _{l+1,m,n-1} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) \\&\qquad +\,\sqrt{2(n+l)+1} \gamma _{-l,m}^0 \psi _{l-1,m,n} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) - \sqrt{2(n+1)} \gamma _{-l,m}^0 \psi _{l-1,m,n+1} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) \Bigg ]. \end{aligned} \end{aligned}$$
(6.11)

If \(l+m\) is odd, the right-hand side shows that the above function is the linear combination of \(\psi _{l'm'n'}\) with \(l'+m'\) being even. Similarly, when \(l+m\) is even, the above function is the linear combination of \(\psi _{l'm'n'}\) with \(l'+m'\) being odd. Since the operator \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} g\) becomes a truncation of g when the function g is expanded into series with basis function \(\psi _{lmn}\), the result of the lemma is obtained immediately. \(\square \)

This lemma inspires us to define \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}: \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} \rightarrow \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) as the restriction of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) on \(\mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and define \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}: \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \rightarrow \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) as the restriction of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) on \(\mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). Below we consider \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) as a linear transformation on \(\mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and study the distribution of its eigenvalues. We start from proving that \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) is injective:

Lemma 5

If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\) and \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), then \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\) if and only if \(f \ne 0\).

Proof

Obviously \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\) implies \(f \ne 0\). Now we assume \(f \ne 0\) and has the following expansion:

$$\begin{aligned} f(\varvec{c}) = \sum _{\begin{array}{c} (l,m,n) \in \mathcal {I}_{L,\varvec{N}} \\ l+m \text { is odd} \end{array}} f_{lmn} \psi _{lmn} \left( \frac{\varvec{c}-\varvec{v}}{\sqrt{RT}} \right) . \end{aligned}$$
(6.12)

Let \(l_0\) be the minimum l such that \(f_{lmn} \ne 0\) holds for some m and n, and let \(n_0\) be the minimum n such that \(f_{l_0 m n} \ne 0\) holds for some m. Thus for all \(l' < l_0\) and \(n' < n_0\), \(f_{l'mn} = 0\) and \(f_{l_0mn'} = 0\) for every available m and n, and there exists an \(m_0\) such that \(f_{l_0 m_0 n_0} \ne 0\). Since \(l_0 + m_0\) is odd, we have \(l_0 \geqslant 1\) and \(|m_0| < l_0\). Let \(\mu = 0\) in (3.27), and we obtain

$$\begin{aligned} \begin{aligned} (\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f)(\varvec{c})&= \sqrt{RT} \sum _{\begin{array}{c} (l,m,n) \in \mathcal {I}_{L,\varvec{N}}\\ l+m \text { is even} \end{array}} \bigg [ \gamma _{l,m}^0 \left( \sqrt{2(n+l)+1} f_{l-1,m,n} - \sqrt{2(n+1)} \gamma _{l,m}^0 f_{l-1,m,n+1} \right) \\&+ \gamma _{-l-1,m}^0 \left( \sqrt{2(n+l)+3} f_{l+1,m,n} - \sqrt{2n} f_{l+1,m,n-1} \right) \bigg ] \psi _{lmn} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) . \end{aligned} \end{aligned}$$
(6.13)

From \(N_{l_0-1} \geqslant N_{l_0}\) and \(|m_0| < l_0\), we know that \((l_0-1, m_0, n_0) \in \mathcal {I}_{L,\varvec{N}}\). According to the definition of \((l_0, m_0, n_0)\), one easily finds that in the above sum, the coefficient of \(\psi _{l_0-1,m_0,n_0}\) is \(\sqrt{2(n_0 + l_0) + 1} \gamma _{-l_0,m_0}^0 f_{l_0 m_0 n_0}\). When \(l_0 + m_0\) is odd, \(\gamma _{-l_0,m_0}^0 \ne 0\), and therefore \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\). \(\square \)

Lemma 6

If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) has only positive eigenvalues.

Proof

For any \(f, g \in \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and

$$\begin{aligned} f(\varvec{c}) = \sum _{(l,m,n) \in \mathcal {I}_{L,\varvec{N}}} f_{lmn} \psi _{lmn} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) , \quad g(\varvec{c}) = \sum _{(l,m,n) \in \mathcal {I}_{L,\varvec{N}}} g_{lmn} \psi _{lmn} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) , \end{aligned}$$
(6.14)

define

$$\begin{aligned} \begin{aligned} \langle f, g \rangle ^{[\varvec{\alpha }]}&= \int _{\mathbb {R}^3} f(\varvec{c}) \overline{g(\varvec{c})} \left[ \psi _{000} \left( \frac{\varvec{c}- \varvec{v}}{\sqrt{RT}} \right) \right] ^{-1} \mathrm {d}\varvec{c}\\&= (RT)^{3/2} \int _{\mathbb {R}^3} f\left( \varvec{v}+ \sqrt{RT} \varvec{\xi }\right) \overline{g(\varvec{v}+ \sqrt{RT} \varvec{\xi })} \left[ \psi _{000}(\varvec{\xi })\right] ^{-1} \,\mathrm {d}\varvec{\xi }\end{aligned} \end{aligned}$$
(6.15)

According to the definition of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) (3.15), we have

$$\begin{aligned} \begin{aligned} \langle \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 f, g \rangle ^{[\varvec{\alpha }]}&= \sum _{(l,m,n) \in \mathcal {I}_{L,\varvec{N}}} \left( \sqrt{RT} \int _{\mathbb {R}^3} \xi _3 f\left( \varvec{v}+ \sqrt{RT} \varvec{\xi }\right) \overline{\psi _{lmn}(\varvec{\xi })} \left[ \psi _{000}(\varvec{\xi })\right] ^{-1} \,\mathrm {d}\varvec{\xi }\right) \\&\quad \times \left( (RT)^{3/2} \int _{\mathbb {R}^3} \overline{g\left( \varvec{v}+ \sqrt{RT} \varvec{\xi }\right) } \psi _{lmn}(\varvec{\xi }) \left[ \psi _{000}(\varvec{\xi })\right] ^{-1} \,\mathrm {d}\varvec{\xi }\right) . \end{aligned} \end{aligned}$$
(6.16)

Using the orthogonality (3.6), one can easily find that the second integral in the above equation equals \(\mathfrak {m}^{-1} \overline{g_{lmn}}\). By replacing f with its series form, we get

$$\begin{aligned} \left\langle \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 f, g \right\rangle ^{[\varvec{\alpha }]} = \frac{(RT)^2}{\mathfrak {m}^{-1}} \sum _{\begin{array}{c} (l,m,n) \in \mathcal {I}_{L,\varvec{N}} \\ (l',m',n') \in \mathcal {I}_{L,\varvec{N}} \end{array}} f_{l'm'n'} \overline{g_{lmn}} \int _{\mathbb {R}^3} \xi _3 \psi _{l'm'n'}(\varvec{\xi }) \overline{\psi _{lmn}(\varvec{\xi })} \left[ \psi _{000}(\varvec{\xi })\right] ^{-1} \,\mathrm {d}\varvec{\xi }. \end{aligned}$$

Using the same method, one can show that \(\langle f, \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 g \rangle ^{[\varvec{\alpha }]}\) also equals the right-hand side of the above equation. Thus

$$\begin{aligned} \left\langle \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 f, g \right\rangle ^{[\varvec{\alpha }]} = \langle f, \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3 g \rangle ^{[\varvec{\alpha }]}, \qquad \forall f,g \in \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}. \end{aligned}$$
(6.17)

If \(f \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(g \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), Eq. (6.17) becomes \(\langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, g \rangle ^{[\varvec{\alpha }]} = \langle f, \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} g \rangle ^{[\varvec{\alpha }]}\). If \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f = \lambda f\) and \(f \ne 0\), then \(\langle f, \lambda f \rangle ^{[\varvec{\alpha }]} = \langle f, \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]} = \langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]}\). By Lemma 5, when \(f \ne 0\), \(\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \ne 0\). Hence \(\lambda = \langle \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f, \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f \rangle ^{[\varvec{\alpha }]} / \langle f, f \rangle ^{[\varvec{\alpha }]} > 0\). \(\square \)

Theorem 7

\(\lambda \) is a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M if and only if \(\lambda ^2\) is an eigenvalue of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) with multiplicity M.

Proof

Suppose \(\lambda \ne 0\) and \(\{ f_1, \ldots , f_M \} \subset \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are linearly independent and satisfy \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f_k = \lambda f_k\). For any \(k = 1, \ldots , M\), there exist unique \(f_k^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(f_k^e \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) such that \(f_k = f_k^o + f_k^e\). Thus

$$\begin{aligned} \lambda \left( f_k^o + f_k^e\right) = \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}(f_k^o + f_k^e) = \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o + \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^e, \qquad k = 1,\ldots ,M. \end{aligned}$$
(6.18)

Therefore \(f_k^o = \lambda ^{-1} \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^e\), \(f_k^e = \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o\), which yields that

$$\begin{aligned} \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o = \lambda \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^e = \lambda ^2 f_k^o. \end{aligned}$$
(6.19)

If there exists \((\alpha _1, \ldots , \alpha _M)^T \in \mathbb {C}^M\) such that \(\alpha _1 f_1^o + \cdots + \alpha _M f_M^o = 0\), then

$$\begin{aligned} \begin{aligned}&\alpha _1 f_1 + \cdots + \alpha _M f_M = \left( \alpha _1 f_1^o + \cdots + \alpha _M f_M^o\right) + \left( \alpha _1 f_1^e + \cdots + \alpha _M f_M^e\right) \\&\quad = {} \alpha _1 \lambda ^{-1}\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_1^o + \alpha _M \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_M^o = \lambda ^{-1}\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} \left( \alpha _1 f_1^o + \cdots + \alpha _M f_M^o\right) = 0. \end{aligned} \end{aligned}$$
(6.20)

Since \(f_1, \ldots , f_M\) are linearly independent, \(\alpha _1 = \cdots = \alpha _M = 0\). Thus \(f_1^o, \ldots , f_M^o\) are also linearly independent, and therefore \(\lambda ^2\) is an eigenvalue of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) with multiplicity at least M. If there exists \(f_{M+1}^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) such that \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o = \lambda ^2 f_{M+1}^o\), then

$$\begin{aligned} \begin{aligned} \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} \left( f_{M+1}^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\right)&= \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o + \lambda ^{-1} \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o \\&= \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o + \lambda f_{M+1}^o = \lambda \left( f_{M+1}^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\right) . \end{aligned} \end{aligned}$$
(6.21)

Therefore \(f_{M+1}^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\) is a linear combination of \(f_1, \ldots , f_M\), and then \(f_{M+1}^o\) is a linear combination of \(f_1^o, \ldots , f_M^o\). This shows that the multiplicity of the eigenvalue \(\lambda ^2\) is M.

Now we assume that \(\{f_1^o, \ldots , f_M^o\} \subset \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are linearly independent and fulfill

$$\begin{aligned} \mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o = \lambda ^2 f_k^o, \qquad k = 1,\ldots ,M. \end{aligned}$$
(6.22)

Equation (6.21) shows that \(f_k^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_k^o\), \(k=1,\ldots ,M\) are eigenfunctions of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with eigenvalue \(\lambda \). Obviously these functions are also linearly independent, and therefore \(\lambda \) is an eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity at least M. If \(f_{M+1} = f_{M+1}^o + f_{M+1}^e\) with \(f_{M+1}^o \in \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(f_{M+1}^e \in \mathbb {E}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) satisfies \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} f_{M+1} = \lambda f_{M+1}\), similar as (6.19), we have \(f_{M+1}^e = \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o\) and \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o = \lambda ^2 f_{M+1}^o\). Thus there exist \(\alpha _1, \ldots , \alpha _M\) such that \(f_{M+1}^o = \alpha _1 f_1^o + \cdots + \alpha _M f_M^o\), which gives

$$\begin{aligned} \begin{aligned} f_{M+1}&= f_{M+1}^o + \lambda ^{-1} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_{M+1}^o = \alpha _1 \left( f_1^o + \lambda ^{-1}\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_1^o\right) + \cdots + \alpha _M \left( f_M^o + \lambda ^{-1}\mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]} f_M^o\right) . \end{aligned} \end{aligned}$$
(6.23)

This shows that the multiplicity of the eigenvalue \(\lambda \) is M. \(\square \)

A direct corollary of the above theorem is

Corollary 8

If \(\lambda \) is a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M, then \(-\lambda \) is also a nonzero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) with multiplicity M.

Theorem 9

If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then the multiplicity of zero eigenvalue of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) is \(\dim \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]} - 2 \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\).

Proof

By Lemma 6, we can assume that all eigenvalues of \(\mathcal {E}_{L,\varvec{N}}^{[\varvec{\alpha }]} \mathcal {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) are \(\lambda _1^2, \lambda _2^2, \ldots , \lambda _{M_o}^2\), where \(M_o = \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\). Using Theorem 7, we know that \(\pm \lambda _1, \ldots , \pm \lambda _M\) are all the nonzero eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\). Thus the conclusion of the theorem follows naturally. \(\square \)

Corollary 8 and Theorem 9 show that the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]}\) are symmetrically distributed with respect to the origin, and the number of positive or negative eigenvalues are the same as the number of odd basis functions. The definition of \(\tilde{\Pi }_k^{[\varvec{\alpha }]}\) (6.9) shows that \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3^{[\varvec{\alpha }]} = \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3 - v_3 \mathrm {Id}\). Hence the distribution of eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\) can be described as follows:

Corollary 10

Let \(M = \dim \mathbb {H}_{L,\varvec{N}}^{[\varvec{\alpha }]}\) and \(M_o = \dim \mathbb {O}_{L,\varvec{N}}^{[\varvec{\alpha }]}\), and suppose \(\lambda _1 \leqslant \lambda _2 \leqslant \cdots \leqslant \lambda _M\) are all the eigenvalues of \(\mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \Pi _3\). If \(N_0 \geqslant N_1 \geqslant \cdots \geqslant N_L\), then it holds that

$$\begin{aligned} \lambda _i \left\{ \begin{array}{l@{\qquad }l}< v_3 &{} \text {if } i \leqslant M_o, \\ = v_3 &{} \text {if } M_o < i \leqslant M - M_o, \\> v_3 &{} \text {if } i > M - M_o. \end{array} \right. \end{aligned}$$
(6.24)

From (6.11), it is clear that the eigenvalues of \((RT)^{-1/2} \mathcal {P}_{L,\varvec{N}}^{[\varvec{\alpha }]} \tilde{\Pi }_3\) is independent of \(\varvec{\alpha }\). Thus, through a rotation in the velocity space, Theorem 2 is naturally obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Torrilhon, M. Numerical Simulation of Microflows Using Moment Methods with Linearized Collision Operator. J Sci Comput 74, 336–374 (2018). https://doi.org/10.1007/s10915-017-0442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0442-7

Keywords

Navigation