Abstract
We develop and analyze \(P_k\) Lagrange finite element methods for a quad-curl problem on planar domains that is based on the Hodge decomposition of divergence-free vector fields. Numerical results that illustrate the performance of the finite element methods are also presented.


Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces \((\)Second Edition\()\). Academic Press, Amsterdam (2003)
Alonso, A., Fernandes, P., Valli, A.: Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains. Eur. J. Appl. Math. 14, 387–406 (2003)
Alonso-Rodríguez, A., Valli, A., Vázquez-Hernández, R.: A formulation of the eddy current problem in the presence of electric ports. Numer. Math. 113, 643–672 (2009)
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)
Assous, F., Michaeli, M.: Hodge decomposition to solve singular static Maxwell’s equations in a non-convex polygon. Appl. Numer. Math. 60, 432–441 (2010)
Babuška, I., Suri, M.: The \(h\)-\(p\) version of the finite element method with quasiuniform meshes. M2AN Math. Model. Numer. Anal. 21, 199–238 (1987)
Biskamp, D.: Magnetic Reconnection in Plasmas. Cambridge University Press, Cambridge (2000)
Bramble, J.H.: A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math. Models Methods Appl. Sci. 13, 361–371 (2003)
Brenner, S.C., Cui, J., Nan, Z., Sung, L.-Y.: Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Comput. 81, 643–659 (2012)
Brenner, S.C., Gedicke, J., Sung, L.-Y.: An adaptive \(P_1\) finite element method for two-dimensional Maxwell’s equations. J. Sci. Comput. 55, 738–754 (2013)
Brenner, S.C., Gedicke, J., Sung, L.-Y.: Hodge decomposition for two-dimensional time harmonic Maxwell’s equations\(:\) impedance boundary condition. Math. Methods Appl. Sci. 40, 370–390 (2017). doi:10.1002/mma.3398
Brenner, S.C., Gedicke, J., Sung, L.-Y.: An adaptive \({P_1}\) finite element method for two-dimensional transverse magnetic time harmonic Maxwell’s equations with general material properties and general boundary conditions. J. Sci. Comput. 68, 848–863 (2016)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods \((\)Third Edition\()\). Springer, New York (2008)
Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26, 074004 (2010)
Chacón, L., Simakov, A.N., Zocco, A.: Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics. Phys. Rev. Lett. 99, 235001 (2007)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Cui, J.: Multigrid methods for two-dimensional Maxwell’s equations on graded meshes. J. Comput. Appl. Math. 255, 231–247 (2014)
Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34, 441–463 (1980)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)
Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985)
Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30, 565–578 (2012)
Lax, P.D.: Functional Analysis. Wiley-Interscience, New York (2002)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)
Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34, B247–B264 (2012)
Nečas, J.: Direct methods in the theory of elliptic equations. Springer, Heidelberg (2012)
Nečas, J.: Equations aux Dérivées Partielles. Presse de l’Université Montréal, Montreal (1965)
Sun, J.: A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132, 185–200 (2016)
Yosida, K.: Functional Analysis Classics in Mathematics. Springer, Berlin (1995). Reprint of the sixth (1980) edition
Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \(\mathbb{R}^{3}\). Math. Comput. 80, 1871–1886 (2011)
Acknowledgements
The work of the first and third authors was supported in part by the National Science Foundation under Grant Nos. DMS-13-19172 and DMS-16-20273. The work of the second author was supported in part by the National Science Foundation under Grant No. DMS-15-21555.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brenner, S.C., Sun, J. & Sung, Ly. Hodge Decomposition Methods for a Quad-Curl Problem on Planar Domains. J Sci Comput 73, 495–513 (2017). https://doi.org/10.1007/s10915-017-0449-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0449-0