Skip to main content
Log in

Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a discontinuous finite volume element method was presented to solve the nonstationary Stokes–Darcy problem for the coupling fluid flow in conduits with porous media flow. The proposed numerical method is constructed on a baseline finite element family of discontinuous linear elements for the approximation of the velocity and hydraulic head, whereas the pressure is approximated by piecewise constant elements. The unique solvability of the approximate solution for the discrete problem is derived. Optimal error estimates of the semi-discretization and full discretization with backward Euler scheme in standard \(L^2\)-norm and broken \(H^1\)-norm are obtained for three discontinuous finite volume element methods (symmetric, non-symmetric and incomplete types). A series of numerical experiments are provided to illustrate the features of the proposed method, such as the optimal accuracy orders, mass conservation, capability to deal with complicated geometries, and applicability to the problems with realistic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arbogast, T., Gomez, M.: A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Gatica, G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous galerkin methods for the stokes problem under minimal regularity. IMA J. Numer. Anal. 34(2), 800–819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Hecht, F., Mghazli, Z.: A new finite element discretization of the stokes problem coupled with darcy equations. IMA J. Numer. Anal. 30, 61–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Rebollo, T.Chacón, Hecht, F., Mghazli, Z., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42, 375–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bi, C., Geng, J.: Discontinuous finite volume element method for parabolic problems. Numer. Methods Partial Differ. Equ. 26(2), 367–383 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Bi, C., Geng, J.: A discontinuous finite volume element method for second-order elliptic problems. Numer. Methods Partial Differ. Equ. 28(2), 425–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boubendir, Y., Tlupova, S.: Stokes–Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bürgera, R., Kumarb, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, Z., McCormick, S.: On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal. 27(3), 636–655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Camano, J., Gatica, G.N., Oyarzua, R., Ruiz-Baier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes–Darcy coupling. Comput. Methods Appl. Mech. Eng. 295, 362–395 (2015)

    Article  MathSciNet  Google Scholar 

  15. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Robin–Robin domain decomposition methods for the steady Stokes–Darcy model with Beaver–Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, Y., Gunzburger, M., He, X.-M., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comput. 83(288), 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47(6), 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8(1), 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carstensen, C., Nataraj, N., Pani, A.K.: Comparison results and unified analysis for first-order finite volume element methods for a poisson model problem. IMA J. Numer. Anal. 36(3), 1120–1142 (2016)

    Article  MathSciNet  Google Scholar 

  20. Çeşmelioğlu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Chatzipantelidis, P., Ginting, V., Lazarov, R.D.: A finite volume element method for a non-linear elliptic problem. Numer. Linear Algebra Appl. 12(5–6), 515–546 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chatzipantelidis, P., Lazarov, R.D., Thomée, V.: Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Methods Partial Differ. Equ. 20(5), 650–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Z., Chen, H.: Pointwise error estimates of discontinuous galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42(3), 1146–1166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chou, S.H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45(4), 1639–1653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48(3), 824–839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61(11), 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem. Comput. Methods Appl. Mech. Eng. 200(21–22), 1877–1891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Girault, V., Riviere, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hansboa, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191(17–18), 1895–1908 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hanspal, N., Waghode, A., Nassehi, V., Wakeman, R.: Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations. Transp. Porous Media 64, 73–101 (2006)

    Article  MATH  Google Scholar 

  38. He, X.-M., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37(5), S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hessari, P.: Pseudospectral least squares method for Stokes–Darcy equations. SIAM J. Numer. Anal. 53(3), 1195–1213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hoppe, R., Porta, P., Vassilevski, Y.: Computational issues related to iterative coupling of subsurface and channel flows. Calcolo 44(1), 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, P., Chen, J., Cai, M.: A mixed and nonconforming fem with nonmatching meshes for a coupled Stokes–Darcy model. J. Sci. Comput. 53, 377–394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kanschat, G., Riviére, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kumar, S.: A mixed and discontinuous galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28(4), 1354–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kumar, S., Nataraj, N., Pani, A.K.: Discontinuous finite volume element methods for second order linear elliptic problems. Numer. Methods Partial Differ. Equ. 25, 1402–1424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kumarb, S., Ruiz-Baier, R.: Equal order discontinuous finite volume element methods for the Stokes problem. J. Sci. Comput. 65(3), 956–978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, R., Li, J., Chen, Z., Gao, Y.: A stabilized finite element method based on two local Gauss integrations for a coupled Stokes–Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, R., Li, J., He, X., Chen, Z.: A stabilized finite volume element method for a coupled Stokes–Darcy problem. Appl. Numer. Math. (submitted)

  50. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids. Numer. Math. 126(2), 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, J., Mu, L., Ye, X.: An adaptive discontinuous finite volume method for elliptic problems. J. Comput. Appl. Math. 235(18), 5422–5431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236(17), 4537–4546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Márquez, A., Meddahi, S., Sayas, F.J.: Strong coupling of finite element methods for the Stokes–Darcy problem. IMA J. Numer. Anal. 35(2), 969–988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mu, L., Jari, R.: A posteriori error analysis for discontinuous finite volume methods of elliptic interface problems. J. Comput. Appl. Math. 255, 529–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79(270), 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes–Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nassehi, V.: Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration. Chem. Eng. Sci. 53, 1253–1265 (1998)

    Article  Google Scholar 

  59. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Shan, L., Zheng, H., Layton, W.: A decoupling method with different sub-domain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)

    Article  MATH  Google Scholar 

  62. Tlupova, S., Cortez, R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228(1), 158–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, G., He, Y., Li, R.: Discontinuous finite volume methods for the stationary Stokes–Darcy problem. Int. J. Numer. Meth. Eng. 107(5), 395–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang, J., Wang, Y., Ye, X.: A unified a posteriori error estimator for finite volume methods for the Stokes equations. Math. Methods Appl. Sci. doi:10.1002/mma.2871

  66. Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42(3), 1062–1072 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44(1), 183–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yin, Z., Jiang, Z., Xu, Q.: A discontinuous finite volume method for the Darcy–Stokes equations. J. Appl. Math. 761242–761258, 2012 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangxin Chen.

Additional information

This work is partially supported by NSF of China (Nos.11371031, 11371288), Foundation CMG in Xi’an Jiaotong University, and the Key Project of Baoji university of Arts and Sciences (No. ZK15040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gao, Y., Li, J. et al. Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem. J Sci Comput 74, 693–727 (2018). https://doi.org/10.1007/s10915-017-0454-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0454-3

Keywords

Navigation