Skip to main content
Log in

Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper focuses on the optimal error estimates of a linearized semi-implicit scheme for the nematic liquid crystal flows, which is used to describe the time evolution of the materials under the influence of both the flow velocity and the microscopic orientation configurations of rod-like liquid crystal flows. Optimal error estimates of the scheme are proved without any restriction of time step by using an error splitting technique proposed by Li and Sun. Numerical results are provided to confirm the theoretical analysis and the stability of the semi-implicit scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.: An overview on numerical anaysis of nematic liquid crystal flows. Arch. Comput. Methods Eng. 18, 285–313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230, 1686–1706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochev, P., Dohrmann, C., Gunzburger, M.: Stabilization of low-order mixed finite element for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  6. Becker, R., Feng, X.B., Prohl, A.: Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46, 1704–1731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabrales, R., Guillén-González, F., Gutiérrez-Santacreu, J.: A time-splitting finite-element stable approximation for the Ericksen–Leslie equations. SIAM J. Sci. Comput. 37(2), 261–282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ericksen, J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    MathSciNet  Google Scholar 

  11. Ericksen, J.: Hydyostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MATH  Google Scholar 

  12. Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, H.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58, 627–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Guillén-González, F.: Mixed formulation, approximation and decoupling algorightm for a penaltized nematic liquid crystal model. Math. Comput. 80(274), 781–819 (2011)

    Article  MATH  Google Scholar 

  15. Guillén-González, F., Rodríguez-Bellido, M., Rojas-Medar, M.: Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model. Math. Nachr. 282, 846–867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guillén-González, F., Gutiérrez-Santacreu, J.: A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. ESIAM Math. Model. Numer. Anal. 47, 1433–1464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier–Stokes problem. Computing 74, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, Y., Li, B., Sun, W.: Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leslie, F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin–Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equ. 252, 745–767 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, F.: Nonlinear theory of defects in nematics liquid crystals: phase transitation and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MATH  Google Scholar 

  29. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, F., Liu, C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2, 1–22 (1996)

    Google Scholar 

  31. Liu, C., Walkington, N.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37, 725–741 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, C., Walkington, N.: Mixed method for the approximation of liquid crystal flow. M2AN Math. Model. Numer. Anal. 36, 205–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Prohl, A.: Computational Micromagnetism. Teubner, Stuttgart (2001)

    Book  MATH  Google Scholar 

  34. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  36. Weinan, E., Wang, X.: Numerical methods for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 38, 1647–1665 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equ. 252, 1169–1181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zlámal, M.: Curved elements in the finite element method. SIAM J. Numer. Anal 10, 229–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Rong An was supported by Zhejiang Provincial Natural Science Foundation with Grant No. LY16A010017. Jian Su was supported by National Natural Science Foundation of China with Grant No. 91330117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong An.

Appendix

Appendix

To get the regularities (2.16)–(2.17) of \(\mathbf{u }_{tt}, p_t\) and \(\mathbf{b }_{tt}\), where \((\mathbf{u }, p, \mathbf{b })\) is the solution to the problem (1.1)–(1.5) and satisfies (2.10)–(2.14), we need to show that \(||\nabla \mathbf{u }_t(x,t)||_{L^2}\) and \(||\mathbf{b }(x,t)||_{H^1}\) remain bounded as \(t\longrightarrow 0\). In this case, a non-local compatibility condition is needed and can be derived as follows. First, we begin to show that the problem

$$\begin{aligned} \left\{ \begin{array}{ll} \Delta p_0=\text{ div } (\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)), \quad &{}\text{ in } \ \Omega ,\\ \partial _\mathbf{n }p_0=(\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))\cdot \mathbf{n },\quad &{}\text{ on } \ \partial \Omega , \end{array} \right. \end{aligned}$$
(9.1)

exists a unique \(p_0\in H^1(\Omega )\cap M\). In fact, from \(\mathbf{f }_0\in \mathbf{H }, \mathbf{u }_0\in \mathbf{D }(A)\) and \(\mathbf{b }_0\in \mathbf{H }^3(\Omega )\), it can be shown that \(\text{ div } (\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))\in L^2(\Omega )\) and \(\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)\in \mathbf{H }(\text{ div } ,\Omega )\). Thus, one has \((\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))\cdot \mathbf{n }|_{\partial \Omega }\in H^{-1/2}(\Omega )\). Finally, we note that the following compatibility condition is satisfied:

$$\begin{aligned}&\displaystyle \int _\Omega \text{ div } (\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)) dx \\&\qquad =\displaystyle \int _{\partial \Omega }(\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))\cdot \mathbf{n }ds \end{aligned}$$

due to the fact \(\text{ div } (\Delta \mathbf{u }_0)=0\). From these observations, it follows that the problem (9.1) exists a unique weak solution \(p_0\in H^1(\Omega )\cap M\). Moreover, the solution \(p_0\) is the limit of the pressure p(xt) in \(H^1(\Omega )\cap M\) as \(t\longrightarrow 0\). To make our point precise, we give the following lemma:

Lemma 9.1

Let the initial values \(\mathbf{u }_0\in \mathbf{D }(A)\) and \(\mathbf{b }_0\in \mathbf{H }^3(\Omega )\) with \(|\mathbf{b }_0|=1\) in \(\Omega \). Suppose that the solution \((\mathbf{u }, p, \mathbf{b })\) to the problem (1.1)–(1.5) satisfies \(||A\mathbf{u }(x,t)-A\mathbf{u }_0(x)||_{L^2}\longrightarrow 0\) and \(||\mathbf{b }(x,t)-\mathbf{b }_0(x)||_{H^3}\longrightarrow 0\) as \(t\longrightarrow 0\). Then the pressure p(xt) tends to the solution \(p_0\) to the problem (9.1) in the sense that

$$\begin{aligned} ||\nabla p(x,t)-\nabla p_0(x)||_{L^2}\longrightarrow 0 \quad \text{ as } \ t\longrightarrow 0. \end{aligned}$$

Proof

For \(t>0\), it follows from (1.1) and \(\text{ div } \mathbf{u }=0\) that the pressure \(p\in H^1(\Omega )\cap M\) is the weak solution to the problem

$$\begin{aligned} \left\{ \begin{array}{ll} \Delta p=\text{ div } (\mathbf{f }-(\mathbf{u }\cdot \nabla )\mathbf{u }-\lambda \text{ div } (\nabla \mathbf{b }\odot \nabla \mathbf{b })), \quad &{}\text{ in } \ \Omega ,\\ \partial _\mathbf{n }p=(\mu \Delta \mathbf{u }+\mathbf{f }-(\mathbf{u }\cdot \nabla )\mathbf{u }-\lambda \text{ div } (\nabla \mathbf{b }\odot \nabla \mathbf{b }))\cdot \mathbf{n },\quad &{}\text{ on } \ \partial \Omega . \end{array} \right. \end{aligned}$$
(9.2)

From \(||A\mathbf{u }(x,t)-A\mathbf{u }_0(x)||_{L^2}\longrightarrow 0\) and \(||\mathbf{b }(x,t)-\mathbf{b }_0(x)||_{H^3}\longrightarrow 0\) as \(t\longrightarrow 0\), we can see that

$$\begin{aligned}&\text{ div } (\mathbf{f }-(\mathbf{u }\cdot \nabla )\mathbf{u }-\lambda \text{ div } (\nabla \mathbf{b }\odot \nabla \mathbf{b }))\\&\longrightarrow \text{ div } (\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)) \end{aligned}$$

in \(L^2(\Omega )\), and

$$\begin{aligned}&(\mu \Delta \mathbf{u }+\mathbf{f }-(\mathbf{u }\cdot \nabla )\mathbf{u }-\lambda \text{ div } (\nabla \mathbf{b }\odot \nabla \mathbf{b }))\cdot \mathbf{n }\\&\longrightarrow (\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))\cdot \mathbf{n }\end{aligned}$$

in \(H^{-1/2}(\partial \Omega )\) as \(t\longrightarrow 0\). These facts imply the desired result. \(\square \)

Let \(p_0\in H^1(\Omega )\cap M\) be defined by the problem (9.1). Then the non-local compatibility conditions are concluded in the following lemma.

Lemma 9.2

Under the assumptions of Lemma 9.1, if \(||\nabla \mathbf{u }_t(x,t)||_{L^2}\) and \(||\mathbf{b }(x,t)||_{H^1}\) remain bounded as \(t\longrightarrow 0\), then there must hold

$$\begin{aligned} \nabla p_0=(\mu \Delta \mathbf{u }_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)),\quad&\text{ on } \ \partial \Omega , \end{aligned}$$
(9.3)
$$\begin{aligned} \nabla (\gamma \Delta \mathbf{b }_0+(\mathbf{u }_0\cdot \nabla )\mathbf{b }_0+\gamma |\nabla \mathbf{b }_0|^2\mathbf{b }_0)\cdot \mathbf{n }=0,\quad&\text{ on } \ \partial \Omega . \end{aligned}$$
(9.4)

Proof

As \(t\longrightarrow 0\), it follows from \(||A\mathbf{u }(x,t)-A\mathbf{u }_0(x)||_{L^2}\longrightarrow 0\) and \(||\mathbf{b }(x,t)-\mathbf{b }_0(x)||_{H^3}\longrightarrow 0\) that

$$\begin{aligned}&\mathbf{u }_t(x,t)\longrightarrow \mu \Delta \mathbf{u }_0-\nabla p_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0)\quad \text{ in } \ \mathbf{L }^2(\Omega ), \end{aligned}$$
(9.5)
$$\begin{aligned}&\mathbf{b }_t(x,t)\longrightarrow \gamma \Delta \mathbf{b }_0+(\mathbf{u }_0\cdot \nabla )\mathbf{b }_0+\gamma |\nabla \mathbf{b }_0|^2\mathbf{b }_0\quad \text{ in } \ \mathbf{H }^1(\Omega ). \end{aligned}$$
(9.6)

If \(||\nabla \mathbf{u }_t(x,t)||_{L^2}\) and \(||\mathbf{b }(x,t)||_{H^1}\) remain bounded as \(t\longrightarrow 0\), then the convergences (9.5) and (9.6) hold weakly in \(\mathbf{H }^1(\Omega )\) and \(\mathbf{H }^2(\Omega )\), respectively. Thus,

$$\begin{aligned}&\mathbf{u }_t(x,t)|_{\partial \Omega }\longrightarrow (\mu \Delta \mathbf{u }_0-\nabla p_0+\mathbf{f }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0-\lambda \text{ div } (\nabla \mathbf{b }_0\odot \nabla \mathbf{b }_0))|_{\partial \Omega },\\&\nabla \mathbf{b }_t\cdot \mathbf{n }|_{\partial \Omega }\longrightarrow \nabla (\gamma \Delta \mathbf{b }_0+(\mathbf{u }_0\cdot \nabla )\mathbf{b }_0+\gamma |\nabla \mathbf{b }_0|^2\mathbf{b }_0)\cdot \mathbf{n }|_{\partial \Omega }, \end{aligned}$$

hold weakly in \(\mathbf{H }^{1/2}(\partial \Omega )\) as \(t\longrightarrow 0\). The facts \(\mathbf{u }_t|_{\partial \Omega }=0\) and \(\nabla \mathbf{b }_t\cdot \mathbf{n }|_{\partial \Omega }=0\) for any \(t>0\) imply the desired non-local compatibility conditions (9.3) and (9.4).\(\square \)

Under these non-local compatibility conditions, we can estimate \(\mathbf{u }_t(0)\) and \(\mathbf{b }_t(0)\) in \(\mathbf{H }^1(\Omega )\) as follows.

Lemma 9.3

Let \(\mathbf{f }_0\in \mathbf{H }\) and \((\mathbf{u }_0, \pi )\in \mathbf{D }(A)\times H^1(\Omega )\cap M\) be determined by the Stokes problem (2.15). Under the assumptions of Lemma 9.1, there holds that \(\mathbf{u }_t(0)\) and \(\mathbf{b }_t(0)\) belong to \(\mathbf{H }^1(\Omega )\).

Proof

Taking \(t=0\) at (1.1) deduces to

$$\begin{aligned} \mathbf{u }_t(0)-\mu \Delta \mathbf{u }_0+(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\nabla p_0+ \lambda \text{ div } (\nabla \mathbf{b }_0 \odot \nabla \mathbf{b }_0)=\mathbf{f }_0. \end{aligned}$$
(9.7)

Since \((\mathbf{u }_0, \pi )\in \mathbf{D }(A)\times H^1(\Omega )\cap M\) is determined by the Stokes problem (2.15), then (9.7) can be rewritten as

$$\begin{aligned} \mathbf{u }_t(0) +(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\nabla ( p_0-\pi )+ \lambda \text{ div } (\nabla \mathbf{b }_0 \odot \nabla \mathbf{b }_0)=0. \end{aligned}$$

By using the following formula:

$$\begin{aligned} \text{ div } (\nabla \mathbf{b }\odot \nabla \mathbf{b })=\Delta \mathbf{b }\cdot \nabla \mathbf{b }+\displaystyle \frac{1}{2}\nabla (|\nabla \mathbf{b }|^2), \end{aligned}$$

and applying \({\mathbb {P}}_{\mathbf{H }}\) to the resulting equation, we obtain

$$\begin{aligned} \mathbf{u }_t(0)=-{\mathbb {P}}_\mathbf{H }((\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\lambda \Delta \mathbf{b }_0\cdot \nabla \mathbf{b }_0). \end{aligned}$$

It follows from (2.2) that

$$\begin{aligned} ||\mathbf{u }_t(0)||_{H^1}&=||{\mathbb {P}}_\mathbf{H }((\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\lambda \Delta \mathbf{b }_0\cdot \nabla \mathbf{b }_0)||_{H^1}\\&\le C||(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\lambda \Delta \mathbf{b }_0\cdot \nabla \mathbf{b }_0||_{H^1}. \end{aligned}$$

Note \(\mathbf{u }_0\in \mathbf{D }(A)\) and \(\mathbf{b }_0\in \mathbf{H }^3(\Omega )\). Then we have

$$\begin{aligned}&||(\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\lambda \Delta \mathbf{b }_0\cdot \nabla \mathbf{b }_0||_{L^2}\\&\quad \le C||\mathbf{u }_0||_{L^\infty }||\nabla \mathbf{u }_0||_{L^2}+C||\nabla \mathbf{b }_0||_{L^\infty }||\Delta \mathbf{b }_0||_{L^2}\\&\quad \le C||A\mathbf{u }_0||_{L^2}||\nabla \mathbf{u }_0||_{L^2}+C||\mathbf{b }_0||_{H^3}||\Delta \mathbf{b }_0||_{L^2}\le C, \end{aligned}$$

and

$$\begin{aligned}&\ ||\nabla ((\mathbf{u }_0\cdot \nabla )\mathbf{u }_0+\lambda \Delta \mathbf{b }_0\cdot \nabla \mathbf{b }_0)||_{L^2}\\&\quad \le ||\nabla \mathbf{u }_0||_{L^4}^2+||\mathbf{u }_0||_{L^\infty }||\nabla ^2\mathbf{u }_0||_{L^2}+||\nabla \mathbf{b }_0||_{L^\infty }||\nabla \Delta \mathbf{b }_0||_{L^2}+||\nabla ^2\mathbf{b }_0||_{L^2}||\Delta \mathbf{b }_0||_{L^2}\\&\quad \le C(||A\mathbf{u }_0||_{L^2}^2+||\mathbf{b }_0||_{H^3}^2)\le C. \end{aligned}$$

The above two estimates imply \(\mathbf{u }_t(0)\in \mathbf{H }^1(\Omega )\). Taking \(t=0\) in (1.2) leads to

$$\begin{aligned} \mathbf{b }_t(0)=\gamma \Delta \mathbf{b }_0-(\mathbf{u }_0\cdot \nabla )\mathbf{b }_0+\gamma |\nabla \mathbf{b }_0|^2\mathbf{b }_0. \end{aligned}$$

By using a similar method, we can prove

$$\begin{aligned} ||\mathbf{b }_t(0)||_{L^2}&\le \gamma ||\Delta \mathbf{b }_0||_{L^2}+||(\mathbf{u }_0\cdot \nabla )\mathbf{b }_0||_{L^2}+\gamma |||\nabla \mathbf{b }_0|^2\mathbf{b }_0||_{L^2}\\&\le \gamma ||\Delta \mathbf{b }_0||_{L^2}+||\mathbf{u }_0||_{L^\infty }||\nabla \mathbf{b }_0||_{L^2}+\gamma ||\nabla \mathbf{b }_0||_{L^4}^2\le C, \end{aligned}$$

and

$$\begin{aligned} ||\nabla \mathbf{b }_t(0)||_{L^2}&\le \gamma ||\nabla \Delta \mathbf{b }_0||_{L^2}+||\nabla \mathbf{u }_0||_{L^4}||\nabla \mathbf{b }_0||_{L^4}+|| \mathbf{u }_0||_{L^\infty }||\nabla ^2\mathbf{b }_0||_{L^2}\\&\quad +\gamma ||\nabla \mathbf{b }_0||_{L^\infty }|| \nabla ^2\mathbf{b }_0||_{L^2}||\mathbf{b }_0||_{L^\infty }+\gamma || \nabla \mathbf{b }_0||_{L^6}^3\le C, \end{aligned}$$

which imply \(\mathbf{b }_t(0)\in \mathbf{H }^1(\Omega )\). \(\square \)

Based on the results derived in Lemma 9.3, we can show some regularities of \(\mathbf{u }_{tt}, p_t\) and \(\mathbf{b }_{tt}\) in next theorem.

Theorem 9.1

Under the assumptions of Theorem 2.1 and Lemma 9.3, suppose \(\mathbf{f }_t\in \mathbf{L }^\infty (0,T; \mathbf{V }_0^\prime )\cap \mathbf{L }^2(0,T;\mathbf{H })\), then we have

$$\begin{aligned} \mathbf{u }_t\in \mathbf{L }^\infty (0,T^\star ;\mathbf{V })\cap \mathbf{L }^2(0,T^\star ;\mathbf{D }(A)), \ \nabla p_t\in \mathbf{L }^2(0,T^\star ; \mathbf{L }^2(\Omega )),\\ \mathbf{u }_{tt}\in \mathbf{L }^\infty (0,T^\star ;\mathbf{V }_0^\prime )\cap \mathbf{L }^2(0,T^\star ;\mathbf{H }), \ \mathbf{b }_{tt}\in \mathbf{L }^2(0,T^\star ;\mathbf{L }^2(\Omega )), \end{aligned}$$

where \(T^\star \) is defined in Theorem 2.1.

Proof

Differentiating (1.1) with respect to t, we get

$$\begin{aligned} \mathbf{u }_{tt}-\mu \Delta \mathbf{u }_t+(\mathbf{u }_t\cdot \nabla )\mathbf{u }+(\mathbf{u }\cdot \nabla )\mathbf{u }_t+\nabla p_t+ 2\lambda \text{ div } (\nabla \mathbf{b }_t \odot \nabla \mathbf{b }) =\mathbf{f }_t. \end{aligned}$$
(9.8)

Multiplying (9.8) by \(\mathbf{u }_{tt}\) and integrating over \(\Omega \), we have

$$\begin{aligned}&||\mathbf{u }_{tt}||_{L^2}^2+\displaystyle \frac{\mu }{2}\displaystyle \frac{d}{dt} ||\nabla \mathbf{u }_t||_{L^2}^2\\&\quad =(\mathbf{f }_t,\mathbf{u }_{tt})-b(\mathbf{u }_t,\mathbf{u },\mathbf{u }_{tt})-b(\mathbf{u },\mathbf{u }_t,\mathbf{u }_{tt})-2\lambda (\text{ div } (\nabla \mathbf{b }_t \odot \nabla \mathbf{b }),\mathbf{u }_{tt}) \\&\quad \le (||\mathbf{f }_t||_{L^2}+||\nabla \mathbf{u }||_{L^\infty }||\mathbf{u }_t||_{L^2}+||\mathbf{u }||_{L^\infty }||\nabla \mathbf{u }_t||_{L^2}\\&\qquad +2\lambda ||\nabla \mathbf{b }||_{L^\infty }||\mathbf{b }_t||_{H^2}+2\lambda ||\nabla ^2\mathbf{b }||_{L^\infty }||\nabla \mathbf{b }_t||_{L^2})||\mathbf{u }_{tt}||_{L^2}\\&\quad \le \displaystyle \frac{1}{2}||\mathbf{u }_{tt}||_{L^2}^2+C(||\mathbf{f }_t||_{L^2}^2+|| \mathbf{u }||_{W^{2,4}}^2||\mathbf{u }_t||_{L^2}^2+||A\mathbf{u }||_{L^2}^2||\nabla \mathbf{u }_t||^2_{L^2}\\&\qquad +|| \mathbf{b }||_{H^3}^2|| \mathbf{b }_t||_{H^2}^2+|| \mathbf{b }||_{H^4}^2|| \mathbf{b }_t||_{H^1}^2), \end{aligned}$$

where we use \(\text{ div } \mathbf{u }_{tt}=0\). It follows from (2.10)–(2.13) that \(\mathbf{u }_{tt}\in \mathbf{L }^2(0,T^\star ;\mathbf{H })\) and \(\mathbf{u }_t\in \mathbf{L }^\infty (0,T^\star ;\mathbf{V })\) if we integrate the above inequality with respect to t from 0 to \(t\le T^\star \) and note that \(\mathbf{u }_t(0)\in \mathbf{H }^1(\Omega )\). By using a similar method, multiplying (9.8) by \(A\mathbf{u }_{t}\) and integrating over \(\Omega \), we have

$$\begin{aligned}&\displaystyle \frac{1}{2}\displaystyle \frac{d}{dt} ||\nabla \mathbf{u }_t||_{L^2}^2+\mu ||A\mathbf{u }_{t}||_{L^2}^2\\&\quad =(\mathbf{f }_t,A\mathbf{u }_{t})-b(\mathbf{u }_t,\mathbf{u },A\mathbf{u }_{t})-b(\mathbf{u },\mathbf{u }_t,A\mathbf{u }_{t})-2\lambda (\text{ div } (\nabla \mathbf{b }_t \odot \nabla \mathbf{b }), A\mathbf{u }_{t})\\&\quad \le \displaystyle \frac{\mu }{2}||A\mathbf{u }_{t}||_{L^2}^2+\displaystyle \frac{C}{\mu }(||\mathbf{f }_t||_{L^2}^2+|| \mathbf{u }||_{W^{2,4}}^2||\mathbf{u }_t||_{L^2}^2+||A\mathbf{u }||_{L^2}^2||\nabla \mathbf{u }_t||^2_{L^2}\\&\qquad +|| \mathbf{b }||_{H^3}^2|| \mathbf{b }_t||_{H^2}^2+|| \mathbf{b }||_{H^4}^2|| \mathbf{b }_t||_{H^1}^2), \end{aligned}$$

which implies \(\mathbf{u }_t\in L^2(0,T^\star ;\mathbf{D }(A))\). Multiplying (9.8) by \(\mathbf{v }\in \mathbf{V }_{0}\) leads to

$$\begin{aligned} (\mathbf{u }_{tt},\mathbf{v })+\mu (\nabla \mathbf{u }_t,\nabla \mathbf{v })+b(\mathbf{u }_t,\mathbf{u },\mathbf{v })+b(\mathbf{u },\mathbf{u }_t,\mathbf{v })- 2\lambda (\nabla \mathbf{b }_t \odot \nabla \mathbf{b },\nabla \mathbf{v }) =(\mathbf{f }_t,\mathbf{v }). \end{aligned}$$

Then it is easy to show

$$\begin{aligned} ||\mathbf{u }_{tt}||_{V_0^\prime }\le C( ||\nabla \mathbf{u }_t||_{L^2}+||\nabla \mathbf{u }||_{L^2}||\nabla \mathbf{u }_t||_{L^2}+||\nabla \mathbf{b }||_{L^\infty }||\nabla \mathbf{b }_t||_{L^2} +||\mathbf{f }_t||_{V_0^\prime }), \end{aligned}$$

which implies \(\mathbf{u }_{tt}\in \mathbf{L }^\infty (0,T^\star ;\mathbf{V }_0^\prime )\). To estimate \(\nabla p_t\), we use (9.8) to deduce that

$$\begin{aligned} ||\nabla p_t||_{L^2}&\le ||\mathbf{u }_{tt}||_{L^2}+\mu ||\Delta \mathbf{u }_t||_{L^2}+||(\mathbf{u }_t\cdot \nabla )\mathbf{u }||_{L^2}+||(\mathbf{u }\cdot \nabla )\mathbf{u }_t||_{L^2}\\&\quad +2\lambda ||\text{ div } (\nabla \mathbf{b }_t \odot \nabla \mathbf{b })||_{L^2}+||\mathbf{f }_t||_{L^2}\\&\le C(||\mathbf{u }_{tt}||_{L^2}+||A\mathbf{u }_t||_{L^2}+|\mathbf{f }_t||_{L^2}+||\nabla \mathbf{u }||_{L^\infty }||\mathbf{u }_t||_{L^2}+||\mathbf{u }||_{L^\infty }||\nabla \mathbf{u }_t||_{L^2}\\&\quad +||\nabla \mathbf{b }||_{L^\infty }|| \mathbf{b }_t||_{H^2}+||\nabla ^2\mathbf{b }||_{L^\infty }||\nabla \mathbf{b }_t||_{L^2}). \end{aligned}$$

From \(\mathbf{u }_{tt}\in \mathbf{L }^2(0,T^\star ;\mathbf{H })\) and \(\mathbf{u }_t\in L^2(0,T^\star ;\mathbf{D }(A))\) shown in the previous paragraph, it is easily seen that \(\nabla p_t\in \mathbf{L }^2(0,T^\star ; \mathbf{L }^2(\Omega ))\) after integrating the above inequality from 0 to \(t\le T^\star \) and using (2.10)–(2.13).

Differentiating (1.2) with respect to t yields

$$\begin{aligned} \mathbf{b }_{tt}-\gamma \Delta \mathbf{b }_t+(\mathbf{u }_t\cdot \nabla )\mathbf{b }+(\mathbf{u }\cdot \nabla )\mathbf{b }_t=\gamma |\nabla \mathbf{b }|^2\mathbf{b }_t+2\gamma (\nabla \mathbf{b }\cdot \nabla \mathbf{b }_t)\mathbf{b }. \end{aligned}$$

It follows from (2.4)–(2.9) that

$$\begin{aligned} ||\mathbf{b }_{tt}||_{L^2}&\le \gamma ||\Delta \mathbf{b }_t||_{L^2}+||(\mathbf{u }_t\cdot \nabla )\mathbf{b }||_{L^2}+|| (\mathbf{u }\cdot \nabla )\mathbf{b }_t||_{L^2}\\&\quad +\gamma || |\nabla \mathbf{b }|^2\mathbf{b }_t||_{L^2}+2\gamma || (\nabla \mathbf{b }\cdot \nabla \mathbf{b }_t)\mathbf{b }||_{L^2}\\&\le C(||\mathbf{b }_t||_{H^2}+||\mathbf{u }_t||_{L^2}||\nabla \mathbf{b }||_{L^\infty }+||\mathbf{u }||_{L^\infty }||\nabla \mathbf{b }_t||_{L^2}\\&\quad +||\nabla \mathbf{b }||_{L^\infty }^2||\mathbf{b }_t||_{L^2}+||\nabla \mathbf{b }||_{L^\infty }||\nabla \mathbf{b }_t||_{L^2})\\&\le C(||\mathbf{b }_t||_{H^2}+||\mathbf{u }_t||_{L^2}||\mathbf{b }||_{H^3}+||A\mathbf{u }||_{L^2}||\nabla \mathbf{b }_t||_{L^2}\\&\quad +||\mathbf{b }||_{H^3}^2||\mathbf{b }_t||_{L^2}+||\mathbf{b }||_{H^3}||\nabla \mathbf{b }_t||_{L^2}), \end{aligned}$$

which completes the proof of \(\mathbf{b }_{tt}\in \mathbf{L }^2(0,T^\star ;\mathbf{L }^2(\Omega ))\) by using (2.10)–(2.13). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, R., Su, J. Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows. J Sci Comput 74, 979–1008 (2018). https://doi.org/10.1007/s10915-017-0479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0479-7

Keywords

Mathematics Subject Classification

Navigation