Abstract
Pathfinding problems consist in determining the optimal shortest path, or at least one path, between two points in the space. In this paper, we propose a particular approach, based on methods used in computational fluid dynamics, that intends to solve such problems. In particular, we reformulate pathfinding problems as the motion of a viscous fluid via the use of the laminar Navier–Stokes equations completed with suitable boundary conditions corresponding to some characteristics of the considered problem: position of the initial and final points, a-priori information of the terrain, One-way routes and dynamic spatial configuration. Then, we propose and validate a numerical implementation of this methodology by using Comsol Multiphysics (i.e., a finite element methods software) and by considering various experiments. We compare the obtained results with those returned by a classical pathfinding algorithm. Finally, we perform a sensitivity analysis of the proposed algorithms with respect to some key parameters.

















Similar content being viewed by others
References
Amutha, B., Ponnavaikko, M.: Location update accuracy in human tracking system using zigbee modules. Int. J. Comput. Sci. Inf. Secur. 6(2), 322–331 (2009)
Arvo, J., Kirk, D.: Fast ray tracing by ray classification. SIGGRAPH Comput. Graph. 21(4), 55–64 (1987)
Batchelor G (2000) An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511800955 (Cambridge Books Online)
Bathe, K.: Computational Fluid and Solid Mechanics. Elsevier Science (2001). https://books.google.es/books?id=Id06Z4YMJLMC
Bretti, G., Natalini, R.: Piccoli B (2007) A fluid-dynamic traffic model on road networks. Arch. Comput. Methods Eng. 14(2), 139–172 (2007). doi:10.1007/s11831-007-9004-8
Burns, E.A., Hatem, M., Leighton, M.J., Ruml, W.: Implementing fast heuristic search code. In: Borrajo, D., Felner, A., Korf, R.E., Likhachev, M., Lpez, C.L., Ruml, W., Sturtevant, N.R. (eds.) SOCS. AAAI Press, Palo Alto (2012)
Calvo, C., Villacorta-Atienza, J., Mironov, V., Gallego, V., Makarov, V.: Waves in isotropic totalistic cellular automata: application to real-time robot navigation. Adv. Complex Syst. 19(4), 1650012–1650018 (2016). doi:10.1142/S0219525916500120
Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Lydia, W., Kavraki, E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. Intelligent Robotics and Autonomous Agents series. MIT Press, Cambridge (2005)
Chrpa, L., Novak, P.: Dynamic Trajectory Replanning for Unmanned Aircrafts Supporting Tactical Missions in Urban Environments. Holonic and Multi-Agent Systems for Manufacturing. Springer, Berlin (2011)
Ciarlet, P., Lions, J.: Handbook of Numerical Analysis: Numerical methods for fluids (pt. 3). Handbook of Numerical Analysis. North-Holland (1990). https://books.google.es/books?id=S0Hqp3vOVxkC
Connolly, C., Burns, J., Weiss, R.: Path planning using laplace’s equation. In: 1990 IEEE International Conference on Robotics and Automation, 1990. Proceedings, vol. 3, pp. 2102–2106 (1990)
Connor, D.: Integrating Planning and Control for Constrained Dynamical Systems. PhD., University of Pennsylvania (2007)
Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)
Dean, W.: Lxxii. the stream-line motion of fluid in a curved pipe (second paper). Lond Edinb. Dublin Philos. Mag. J. Sci. 5(30), 673–695 (1928). doi:10.1080/14786440408564513
Dickmann, D.: On the Near Field Mean Flow Structure of Transverse Jets Issuing Into a Supersonic Freestream. University of Texas at Arlington (2007). https://books.google.es/books?id=4ee-g96_F5gC
Dijkstra, E.: A Short Introduction to the Art of Programming. Techn. Hogeschool, Eindhoven (1971)
Eberly, D.: 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. CRC Press, Boca Raton (2006)
Fay, J.: Introduction to Fluid Mechanics. MIT Press (1994). https://books.google.es/books?id=XGVpue4954wC
Fuerstman, M., Deschatelets, P., Kane, R., Schwartz, A., Kenis, P., Deutch, J., Whitesides, G.: Solving mazes using microfluidic networks. Langmuir 19(11), 4714–4722 (2003). doi:10.1021/la030054x
Girod, B., Greiner, G., Niemann, H.: Principles of 3D Image Analysis and Synthesis. The Springer International Series in Engineering and Computer Science. Springer, US (2013). https://books.google.es/books?id=jVHuBwAAQBAJ
Glowinski, R., Neittaanmäki, P.: Partial Differential Equations: Modelling and Numerical Simulation. Computational Methods in Applied Sciences. Springer, Netherlands (2008). https://books.google.es/books?id=xKhfyc0Nf54C
Hertzog, D., Ivorra, B., Mohammadi, B., Bakajin, O., Santiago, J.: Optimization of a microfluidic mixer for studying protein folding kinetics. Anal. Chem. 78(13), 4299–4306 (2006). doi:10.1021/ac051903j
Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible navierstokes equations. Int. J. Numer. Methods Fluids 22(5), 325–352 (1996)
Hunt, B., Lipsman, R., Rosenberg, J.: A Guide to MATLAB: For Beginners and Experienced Users. Cambridge University Press (2001). https://books.google.es/books?id=XhQBx9LJKIAC
Hysing, J., Turek, S.: Evaluation of commercial and academic cfd codes for a two-phase flow benchmark test case. Int. J. Comput. Sci. Eng. 10(4), 387–394 (2015)
Infante, J.A., Ivorra, B., Ramos, A., Rey, J.: On the modelling and simulation of high pressure processes and inactivation of enzymes in food engineering. Math. Models Methods Appl. Sci. 19(12), 2203–2229 (2009). doi:10.1142/S0218202509004091
Isebe, D., Azerad, P., Bouchette, F., Ivorra, B.: Mohammadi B (2008) Shape optimization of geotextile tubes for sandy beach protection. Int. J. Numer. Methods Eng. 74(8), 1262–1277 (2008). doi:10.1002/nme.2209
Ivorra, B., Hertzog, D., Mohammadi, B., Santiago, J.: Semi-deterministic and genetic algorithms for global optimization of microfluidic protein-folding devices. Int. J. Numer. Methods Eng. 66(2), 19–333 (2006). doi:10.1002/nme.1562
Ivorra, B., Redondo, J., Santiago, J., Ortigosa, P., Ramos, A.: Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Phys. Fluids 25(3), 032001 (2013). doi:10.1063/1.4793612
Johnson, R.: Handbook of Fluid Dynamics. Handbook Series for Mechanical Engineering. Taylor & Francis, Oxfordshire (1998)
Katevas, N.: Mobile Robotics in Healthcare. Assistive technology research series. IOS Press (2001). https://books.google.es/books?id=jT__IKy9wTgC
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)
Koenig, S., Likhachev, M.: D*lite. In: Eighteenth National Conference on Artificial Intelligence, pp. 476–483. American Association for Artificial Intelligence (2002)
Kwon, H.J.: Use of comsol simulation for undergraduate fluid dynamics course. In: 2012 ASEE Annual Conference & Exposition, San Antonio, Texas. https://peer.asee.org/22167 (2012)
Lee, V., Law, M., Wee, S.: Theory to practice on finite element method and computational fluid dynamics tools. Aust. J. Eng. Educ. 22(2), 123–133 (2015)
Lolla, S.: Path Planning in Time Dependent Flows using Level Set Methods. PhD., University of Massachusetts Institute Of Technology (2012)
Louste, C., Liegeois, A.: Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J. Intell. Robot. Syst. 27(1), 99–112 (2000)
Nau, D., Kumar, V., Kanal, L.: General branch and bound, and its relation to A* and AO*. Artif. Intell. 23(1), 29–58 (1984)
Pepper, D., Wang, X.: Benchmarking COMSOL Multiphysics 3.5a CFD problems. In: Proceeding of the Cosmol Conference 2009, Boston. Comsol Inc. (2009)
Pimenta, L., Michael, N., Mesquita, R., Pereira, G., Kumar, V.: Control of swarms based on hydrodynamic models. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1948–1953 (2008)
Premakumar, P.: A* (A star) search for path planning tutorial. Matlab Central. http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/26248/versions/3/download/zip (2010)
Ramos Del Olmo, A.: Introducción al análisis matemático del método de elementos finitos. Editorial Complutense, Madrid (2013). ISBN:978-8499381282
Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)
Roussos, G., Dimarogonas, D.V., Kyriakopoulos, K.J.: 3d navigation and collision avoidance for nonholonomic aircraft-like vehicles. Int. J. Adapt. Control Signal Process. 24(10), 900–920 (2010). doi:10.1002/acs.1199
Sun, X., Yeoh, W., Uras, T., Koenig, S.: Incremental ara*: an incremental anytime search algorithm for moving-target search. In: International Conference on Automated Planning and Scheduling (2012)
Suzuno, K., Ueyama, D., Branicki, M., Tth, R., Braun, A., Lagzi, I.: Maze solving using fatty acid chemistry. Langmuir 30(31), 9251–9255 (2014). doi:10.1021/la5018467
Szab, C., Sobota, B.: Path-finding algorithm application for route-searching in different areas of computer graphics. In: Zhang, Y. (ed.) New Frontiers in Graph Theory. InTech (2012). ISBN:978-953-51-0115-4
Tabatabaian, M.: Comsol 5 for Engineers. Multiphysics Modeling Series. Mercury Learning & Information (2015). https://books.google.es/books?id=twhSrgEACAAJ
Twizell, E., Bright, N.: Numerical modelling of fan performance. Appl. Math. Model. 5(4), 246–250 (1981). doi:10.1016/S0307-904X(81)80074-1
Villacorta-Atienza, J., Calvo, C., Makarov, V.: Prediction-for-compaction: navigation in social environments using generalized cognitive maps. Biol. Cybern. 109(3), 307–320 (2015). doi:10.1007/s00422-015-0644-8
Wang, J., Deng, W.: Optimizing capacity of signalized road network with reversible lanes. Transport (2015). doi:10.3846/16484142.2014.994227
Wu, X., Zhang, S.: The study and application of artificial intelligence pathfinding algorithm in game domain. In: 2011 International Conference on Computer Science and Service System (CSSS), pp. 3772–3774. IEEE (2011). doi:10.1109/CSSS.2011.5974547
Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for A*. Int. J. Geogr. Inf. Sci. 23(4), 531–543 (2009). doi:10.1080/13658810801949850
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was carried out thanks to the financial support of the Spanish “Ministry of Economy and Competitiveness” under Projects MTM2011-22658 and MTM2015-64865-P; the “Junta de Andalucía” and the European Regional Development Fund through the Project P12-TIC301; and the research group MOMAT (Ref. 910480) supported by “Banco de Santander” and “Universidad Complutense de Madrid”. The author would like to thank Angel M. Ramos del Olmo and Tatiana Diaz Jimenez for their valuable help during this work.
Rights and permissions
About this article
Cite this article
Ivorra, B. Application of the Laminar Navier–Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics. J Sci Comput 74, 1163–1187 (2018). https://doi.org/10.1007/s10915-017-0489-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0489-5