Skip to main content
Log in

Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we present a second-order in time implicit–explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn–Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn–Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn–Hilliard system modeled by the IMEX LDG method can inherit the nonlinear stability of the continuous model. We apply a stabilization technique and prove unconditional energy stability of our scheme. Numerical experiments are performed to validate the analysis. Computational efficiency can be significantly enhanced by using this IMEX LDG method with a large time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, J., Spiteri, R.J.: Implicit–explicit Runge-Kutta method for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ascher, U.M., Ruuth, J., Wetton, T.R.: Implicit–explicit method for time dependent partial differential equations. SIAM. J. Numer. Anal. 32, 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezis, H., Gallout, T.: Nonlinear Schrodinger evolution equations. Nonlinear Anal. Theory Meth. Appl. 4, 677–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  7. Choo, S.M., Chung, S.K., Kim, K.I.: Conservative nonlinear difference scheme for the Cahn–Hilliard equation-II. Comput. Math. Appl. 39, 229–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elliott, C.M., French, D.A.: A nonconforming finite element method for the two-dimensional Cahn–Hilliard equations. SIAM J. Numer. Anal. 26, 884–903 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58, 603–630 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elliott, C.M., Stinner, B.: Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13, 325–360 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Available at http://www.math.utah.edu/~eyre/research/methods/stable.ps (1998)

  15. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. Mater. Res. Soc. Sympos. Proc. 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  16. Feng, X.L., Song, H., Tang, Tao, Yang, J.: Nonlinear stability of the implicit–explicit methods for the Allen–Cahn equation. Inverse Probl Imaging 7, 679–695 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, R., Xu, Y.: Efficient solvers of DG discretization for the Cahn–Hilliard equations. SIAM J. Sci. Comput. 58, 380–408 (2014)

    Article  MATH  Google Scholar 

  18. He, Y.N., Liu, Y.X., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, D., Qiao, Z.: On second order semi-implicit fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70, 301–341 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Song, H.: Energy stable and large time-stepping methods for the Cahn–Hilliard equation. Inter. J. Comput. Math. 92, 2091–2108 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sun, Z.Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64, 1463–1471 (1995)

    MATH  MathSciNet  Google Scholar 

  24. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Num. Anal. 44, 1759–1779 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2016)

    MATH  MathSciNet  Google Scholar 

  26. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: Math. Model. Numer. Anal. 50, 1083–1105 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their constructive comments and suggestions which have led to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huailing Song.

Additional information

The first author was supported by NSFC (Grant No.11301167), Natural Science Foundation of Hunan Province, China (Grant No.14JJ3063) and by the China Scholarship Council (CSC). The second author was supported by DOE Grant DE-FG02-08ER25863 and NSF Grant DMS-1418750.

Appendices

Appendix A: The Proof of Proposition 1

Due to the linearity and finite dimensionality of the problem, it is enough to show that the only solution to (19) and (20) with \(u=0\) is \(v_h=0\).

$$\begin{aligned}&\big (\sigma _h, \tau \big )_K+\big (v_h, \nabla \cdot \tau \big )_K-<\hat{v}_h, \tau \cdot \mathbf {n}>_{\partial K}=0,\\&\quad \big (\sigma _h, \nabla \eta \big )_K-<\hat{\sigma }_h\cdot \mathbf {n},\eta > _{\partial K}=0. \end{aligned}$$

Taking \(\tau =\sigma _h\) and \(\eta =v_h\),

$$\begin{aligned}&\big (\sigma _h, \sigma _h\big )_K+\big (v_h, \nabla \cdot \sigma _h\big )_K-<\hat{v}_h, \sigma _h\cdot \mathbf {n}>_{\partial K}=0,\\&\quad \big (\sigma _h, \nabla v_h\big )_K-<\hat{\sigma }_h\cdot \mathbf {n},v_h> _{\partial K}=0. \end{aligned}$$

Applying integration by parts, and adding the two equations, we get

$$\begin{aligned} H_{\partial K}(v_h, \sigma _h)_K=(\sigma _h, \sigma _h)_K. \end{aligned}$$

Summing over K, we can obtain

$$\begin{aligned} \sum \limits _K(\sigma _h, \sigma _h)_K=0 \end{aligned}$$

which implies \(\sigma _h=0\). Using the relationship (21), we have \(\nabla v_h=0\) on every K and \( [v_h]=0\), since \(\mu >0\). Then \(v_h|_K=C\). Because of \([v_h]=0\), \(v_h=C\). However

$$\begin{aligned} \int _{\varOmega } v_hdx=C\cdot |{\varOmega }|=0, \end{aligned}$$

which implies \(v_h=0\). Thus we have completed the proof.

Appendix B: The Proof of Lemma 3

Using the LDG discrete “inverse Laplacian” and taking \(\tau =\sigma _h^{n+1}\) and \(\eta =v_h^{n+1}\) in (22),

$$\begin{aligned}&\big (u^{n+1}-u^{n}, v_h^{n+1}\big )_K-\big (\sigma _h^{n+1}, \nabla v_h^{n+1}\big )_K+<\hat{\sigma }_h^{n+1}\cdot \mathbf {n},v_h^{n+1}> _{\partial K}=0,\\&\quad \big (\sigma _h^{n+1}, \sigma _h^{n+1}\big )_K+\big (v_h^{n+1}, \nabla \cdot \sigma _h^{n+1}\big )_K-<\hat{v}_h^{n+1}, \sigma _h^{n+1}\cdot \mathbf {n}>_{\partial K}=0. \end{aligned}$$

Then

$$\begin{aligned} \big (u^{n+1}-u^{n}, v_h^{n+1})_K+H_{\partial K}(v_h^{n+1}, \sigma _h^{n+1})_K=(\sigma _h^{n+1}, \sigma _h^{n+1})_K. \end{aligned}$$

Summing over K and using the Lemma 1, we can obtain the result (24).

Note that \(\delta ^2 u^{n+1}=u^{n+1}-2u^n+u^{n-1}\), clearly

$$\begin{aligned} \left\{ \begin{array}{l} \big (\delta ^2 u^{n+1}, \eta \big )_K=\big (\sigma _h^{n+1}-\sigma _h^{n}, \nabla \eta \big )_K-<(\hat{\sigma }_h^{n+1}-\hat{\sigma }_h^{n})\cdot \mathbf {n},\eta> _{\partial K},\\ \big (\sigma _h^{n+1}, \tau \big )_K=-\big (v_h^{n+1}, \nabla \cdot \tau \big )_K+<\hat{v}_h^{n+1}, \tau \cdot \mathbf {n}>_{\partial K}. \end{array} \right. \end{aligned}$$

Similarly, taking \( \eta =v_h^{n+1}\) and \(\tau =\sigma _h^{n+1}-\sigma _h^{n}\),

$$\begin{aligned}&\big (\delta ^2u^{n+1}, v_h^{n+1}\big )_K-\big (\sigma _h^{n+1}-\sigma _h^{n}, \nabla v_h^{n+1}\big )_K+<(\hat{\sigma }_h^{n+1}-\hat{\sigma }_h^{n})\cdot \mathbf {n},v_h^{n+1}> _{\partial K}=0,\\&\quad \big (\sigma _h^{n+1}, \sigma _h^{n+1}-\sigma _h^{n}\big )_K+\big (v_h^{n+1}, \nabla \cdot (\sigma _h^{n+1}-\sigma _h^{n})\big )_K-<\hat{v}_h^{n+1}, (\sigma _h^{n+1}-\sigma _h^{n})\cdot \mathbf {n}>_{\partial K}=0. \end{aligned}$$

So that

$$\begin{aligned}&\big (\delta ^2 u^{n+1}, v_h^{n+1})_K+H_{\partial K}(v_h^{n+1}, \sigma _h^{n+1}-\sigma _h^{n}) \\&\quad =\left( \sigma _h^{n+1}, \sigma _h^{n+1}-\sigma _h^{n}\right) _K. \end{aligned}$$

Summing over K and using the Lemma 1, we can obtain the result (25). This completes the proof.

Appendix C: The Proof of the Lemma 7

Taking \(\rho =\varepsilon ^{2}u^1, \mathbf q =-\varepsilon ^{2}\mathbf {w}^1, \phi =p^1-r^0, {\psi }=\varepsilon ^{2}(\mathbf {s}_1^{0}-\mathbf s _2^1)\) in Eqs. (51), and using the same analysis as the Lemma 6, we have

$$\begin{aligned} \frac{\varepsilon ^2}{t_1}\big (u^1-u^0, u^1\big )+(p^1,p^1-r^0)=0. \end{aligned}$$

Summing up over K,

$$\begin{aligned} \frac{\varepsilon ^2}{t_1}\cdot \Big (\Vert u^1\Vert ^2-\Vert u^0\Vert ^2\Big )+\Vert p^1\Vert ^2\le \frac{1}{2}\big (\Vert p^1\Vert ^2+\Vert r^0\Vert ^2\big ), \end{aligned}$$

So we have the result

$$\begin{aligned} \Vert u^1\Vert ^2\le \Vert u^0\Vert ^2+\frac{t_1}{\varepsilon ^2}\Vert f(u^0)\Vert ^2, \end{aligned}$$

and

$$\begin{aligned} \Vert p^1\Vert ^2\le \frac{\varepsilon ^2}{t_1}\Vert u^0\Vert ^2+\Vert f(u^0)\Vert ^2, \end{aligned}$$

By the definition of the discrete Laplacian operator,

$$\begin{aligned} (p^1,\phi )=-\varepsilon ^2(-\Delta _h u^1, \phi ), \end{aligned}$$

Then Taking \(\phi =-\Delta _h u^1\), we obtain

$$\begin{aligned} \Vert \Delta _h u^1\Vert ^2\le \frac{1}{\varepsilon ^2 t_1 }\Vert u^0\Vert ^2+\frac{1}{\varepsilon ^4}\Vert f(u^0)\Vert ^2, \end{aligned}$$

Next, taking \(\rho =v_h^1=(-\Delta )^{-1}(u^1-u^0), \mathbf q =\sigma _h^1, \phi =u^1-u^0,\xi =u^1-u^0\) in Eqs. (51), and

$$\begin{aligned} (\mathbf w ^{1}-\mathbf w ^{0}, \mathbf w ^{1})_K=\big (\nabla (u^1-u^0), \mathbf w ^{1})_K+H_{\partial K}(u^1-u^0,\mathbf w ^{1})-<\hat{\mathbf{w }}^{1}\cdot \mathbf {n},u^1-u^0>_{\partial K}, \end{aligned}$$

using the same argument as Eqs. (36)–(48), then

$$\begin{aligned} \Big (\frac{u^{1}-u^0}{t_1}, v_h^1\Big )_K+\varepsilon ^2(\mathbf w ^{1}-\mathbf w ^{0}, \mathbf w ^{1})_K+(f(u^0), u^1-u^0)_K-\varepsilon ^2H_{\partial K}(u^1-u^0,\mathbf w ^{1})=0. \end{aligned}$$

Using Lemmas 1, 3, and summing on K,

$$\begin{aligned}&\frac{1}{t_1}\Vert \sigma _h^1\Vert ^2+\frac{\varepsilon ^2}{2}\Vert \mathbf w ^{1}\Vert ^2+\sum \limits _{K}(F(u^1),1)\\&\quad \le E(u^0)+|f^{\prime }(u^0)|\cdot \Vert u^1-u^0\Vert ^2\\&\quad \le C\Big ({E(u^0), \Vert u^0\Vert _{H^4}} \Big ). \end{aligned}$$

So that

$$\begin{aligned} \Vert \mathbf {w}^{1}\Vert ^2 \le C\Big ({E(u^0), \Vert u^0\Vert _{H^4}} \Big ) \frac{1}{\varepsilon ^2}, \end{aligned}$$

Finally, by the Lemma 4,

$$\begin{aligned} \Vert u^1\Vert _{\infty }\le C\sqrt{1+\varepsilon ^{-1}}\cdot \sqrt{\log \left( 1+\left( \frac{1}{\varepsilon ^2 t_1} +\varepsilon ^{-4}\right) ^{\frac{1}{2}}\right) } . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Shu, CW. Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation. J Sci Comput 73, 1178–1203 (2017). https://doi.org/10.1007/s10915-017-0497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0497-5

Keywords

Navigation