Abstract
In this paper, we propose a mixture model for tensor completion by combining the nuclear norm with the low-rank matrix factorization. To solve this model, we develop two algorithms: non-smooth low-rank tensor completion (NS-LRTC), smooth low-rank tensor completion (S-LRTC). When the sampling rate (SR) is high, our experiments on real-world data show that the NS-LRTC algorithm outperforms other tested methods in running time and recovery quality. In addition, whatever the SR is, the proposed S-LRTC algorithm delivers state-of-art recovery performance compared with other tested approaches. Although the objective function in our model is non-convex and non-differentiable, we prove that every cluster point of the sequence generated by NS-LRTC or S-LRTC is a stationary point.






Similar content being viewed by others

References
De Lathauwer, L., Castaing, J., Cardoso, J.F.: Fourth-order cumulant based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(1), 1253–1278 (2000)
Vlasic, D., Brand, M., Pfrister, H., Popovic, J.: Face transfer with multilinear models. ACM Trans. Graph. 24(3), 426–433 (2005)
Beylkin, G., Mohlencamp, M.J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. 99(16), 10246–10251 (2002)
Acar, E., Bingol, C.A., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. In: Proceedings of ACM Siggraph, pp. 414–424. New Orleans, USA (2000)
Komodakis, N., Tziritas, G.: Image completion using global optimization. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp. 417–424 (2006)
Korah, T., Rasmussen, C.: Spatio-temporal impainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(7), 2262–2271 (2007)
Patwardhan, K.A., Spiro, G., Bertalmio, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)
Varghees, V.N., Manikandan, M.S., Gini, R.: Adaptive MRI image denoising using total-variation and local noise estimation. In: Processing of the 2012 International Conference on Advances in Engineering, Science and Management(ICAESM), pp. 506–511 (2012)
Li, N., Li, B.: Tensor completion for on-board compression of hyperspectral images. In: 17th IEEE international conference on image processing (ICIP), IEEE, pp. 517–520 (2010)
Xing, Z.G., Zhou, M., Castrodad, A., Saprio, G., Carin, L.: Dictionary learning for noisy and incomplete hyperspectral images. SIAM J. Imaging Sci. 5(1), 33–56 (2012)
Liu, Y., Jiao, L., Shang, F.: An efficient matrix factorization method for tensor completion. IEEE Signal Process. Lett. 20(4), 307–310 (2013)
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. Proc. SIAM Rev. 52(3), 471–501 (2010)
Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Progr. 128(1–2), 321–353 (2011)
Toh, K.C., Tun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)
Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Progr. Comput. 4(4), 1–29 (2012)
Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer. Anal. 32(1), 227–245 (2012)
Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. J. Front. Math. China Spec. Issue Comput. Math. 7(2), 365–384 (2011)
Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press, Madison (1963)
Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)
Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)
Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)
Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Kruskal, J. B.: Rank decomposition and uniqueness for 3-way and N-way arrays. In: Multiway Data Analysis, pp. 7–18 (1988)
Liu, J., Musialski, P., Wonka, P., Yw, J.P.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 1126–1153 (2013)
Kolda, G., Bader, W.: Tensor decomposition and application. SIAM Rev. 51(3), 455–500 (2009)
Xu, Y.Y., Hao, R.R., Yin, W.T., Su, Z.X.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)
Tseng, P.: Convergence of a block coordinate descent method for non-differential minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)
Wen, Z.W., Yin, W.T., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)
Cai, J.F., Candès, F.J., Shen, Z.: A singular value thresholding decomposition, UCLA CAM Report (2010)
Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum, arXiv:1605.07272v3 [cs.LG] (2017)
Nesterov, Y.: Smooth minimization of non-smooth function. Math. Progr. 20(6), 127–152 (2005)
Yunus, A., Coskun, K., Akbar, A., Ismail, K., Fatemeh, K.: Uniform-geometric distribution. J. Stat. Comput. Simul. 86(9), 1754–1770 (2016)
Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equation in Several Variables. Academic Press, New York (1970)
Dimitri, P.: Bertsekas, Nonlinear Programming, 208–211, 2nd edn. Athena Scientific, Nashua (1999)
Acknowledgements
We thank the anonymous referees for their detailed comment, which helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by the National Science Foundation of China under Grant 61179039 and the National Key Basic Research Development Program (973 Program) of China under Grant 2011CB707100.
Rights and permissions
About this article
Cite this article
Gao, S., Fan, Q. A Mixture of Nuclear Norm and Matrix Factorization for Tensor Completion. J Sci Comput 75, 43–64 (2018). https://doi.org/10.1007/s10915-017-0521-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0521-9