Abstract
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.











Similar content being viewed by others
References
Adams, R.: Sobolev Spaces. Academic Press, New York (1975)
Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)
Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)
Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)
Codina, R., Blasco, J.: Stabilized nite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Eng. 182, 277–300 (2000)
Daly, B.J., Harlow, F.H., Shannon, J.P., Welch, J.E.: The MAC Method, Technical Report LA-3425, Los Alamos Scientific Laboratory, University of California (1965)
Girault, V., Lopez, H.: Finite-element error estimates for the MAC scheme. IMA J. Numer. Anal. 16, 347–379 (1996)
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)
Goda, K.: A multistep technique with implicit divergerence schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)
Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)
Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)
Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)
Gustafsson, B., Nilsson, J.: Boundary conditions and estimates for the steady Stokes equations on staggered grids. J. Sci. Comput. 15, 29–59 (2000)
Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)
Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)
Heister, T., Olshanskii, M.A., Rebholz, L.G.: Unconditional long-time stability of a velocity-vorticity method for the 2D Navier–Stokes equations. Numer. Math. 135, 143–167 (2017)
Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)
Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)
Kanschat, G.: Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int. J. Numer. Methods Fluids 56, 941–950 (2008)
Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)
Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)
Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)
Lebedev, V.L.: Difference analogues of orthogonal decompositions, fundamental differential operators and certain boundary-value problems of mathematical physics. Z. Vycisl. Mat. i Mat. Fiz. 4, 449–465 (1964)
Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)
Li, M., Tang, T., Fornberg, B.: A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)
Liu, J.-G., Liu, J., Pego, R.: Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60, 1443–1487 (2007)
McKee, S., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: The MAC method. Comput. Fluids 37, 907–930 (2008)
Minev, P.: Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem. Int. J. Numer. Methods Fluids 58, 307–317 (2008)
Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)
Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)
Nicolaides, R.A., Wu, X.: Analysis and convergence of the MAC scheme II. Navier–Stokes equations. Math. Comput. 65, 29–44 (1996)
Rannacher, R.: On chorin’s projection method for the incompressible navier-stokes equations. In: Heywood J.G., Masuda K., Rautmann R., Solonnikov V.A. (eds.) The Navier-Stokes Equations II—Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin, Heidelberg (1992)
Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55, 1135–1158 (2017)
Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)
Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)
Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)
Shen, J.: On a new pseudo-compressibility method for the incompressible Navier-Stokes equations. Appl. Numer. Math. 21, 71–90 (1996)
Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)
Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Bao W., Du Q. (eds.) Multiscale Modeling and Analysis for Materials Simulation. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 22, pp. 147–195. World Scientific Publishing, Hackensack (2012)
Simo, J., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comput. Methods Appl. Mech. Eng. 111, 111–154 (1994)
Stephen, A.B.: A finite difference Galerkin formulation for the incompressible Navier–Stokes equations. J. Comput. Phys. 53, 152–172 (1984)
Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)
Temam, R.: Une méthode d’approximation des solutions des équations de Navier–Stokes. Bull. Soc. Math. France 98, 115–152 (1968)
Timmermans, L.J.P., Minev, P.D., Van De Vosse, F.N.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22, 673–688 (1996)
Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23, 1235–1248 (2007)
Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44, 29–40 (2006)
Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)
Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012)
Wang, C., Liu, J.-G.: Convergence of gauge method for incompressible flow. Math. Comput. 69, 1385–1407 (2000)
Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)
Weinan, E., Liu, J.-G.: Projection method II: Godunov–Ryabenki analysis. SIAM J. Numer. Anal. 33, 1597–1621 (1996)
Weinan, E., Liu, J.-G.: Projection method III: spatial discretization on the staggered grid. Math. Comput. 71, 27–47 (2002)
Weinan, E., Liu, J.-G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1, 317–332 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of Huangxin Chen was supported by the NSF of China (Grant Nos. 11771363, 91630204, 51661135011) and Program for Prominent Young Talents in Fujian Province University. Shuyu Sun acknowledges that this work is supported by the KAUST research fund awarded to the Computational Transport Phenomena Laboratory at KAUST through the Grant BAS/1/1351-01-01.
Rights and permissions
About this article
Cite this article
Chen, H., Sun, S. & Zhang, T. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids. J Sci Comput 75, 427–456 (2018). https://doi.org/10.1007/s10915-017-0543-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0543-3
Keywords
- Navier–Stokes equation
- Finite difference methods
- Staggered grids
- Linear implicit scheme
- Projection method
- Upwind scheme
- Energy stability