Skip to main content
Log in

On the Operator Splitting and Integral Equation Preconditioned Deferred Correction Methods for the “Good” Boussinesq Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study two numerical methods for the “Good” Boussinesq (GB) equation. Both methods are designed to solve the spatial-temporal pseudo-spectral collocation formulations of the GB equation using the deferred correction methods in one time marching step, where the Fourier series based pseudo-spectral formulation is applied in the spatial direction. The main idea is to iteratively apply a low order method to solve an error equation and refine the provisional solutions until they converge to the high order pseudo-spectral solutions both in space and time. In the first method, an operator splitting approach is introduced as the low order preconditioner in the deferred correction procedure for the temporal Gauss collocation formulation of the original GB equation. The method shows good numerical properties when the deferred correction procedure is convergent and the accuracy requirement is achievable. However, due to the stiffness of the linear differential operators, the Krylov deferred correction (KDC) method has to be applied in order to make the iterations converge. And also, due to the spectral differentiation operator involved, the condition number of the algorithm scales as \(O(N^4)\), where N is the number of Fourier terms in the spatial direction. To improve the numerical stability and efficiency, an integral equation approach is applied to “precondition” the GB equation in the second proposed numerical method, by inverting the linear terms of the GB equation analytically. As the nonlinear term of the GB equation is non-stiff, the simple forward Euler’s method preconditioned spectral deferred correction (SDC) iterations converge more efficiently than existing Jacobian-Free Newton–Krylov (JFNK) based KDC implementations, and the condition number of the new formulation is O(1), which leads to a machine precision accuracy at each discrete time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  2. Attili, B.S.: The adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Methods Partial Differ. Equ. 22(6), 1337–1347 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmuller, E.: Modified defect correction algorithms for ODEs. Part I. General Theory Numer. Algorithms 36, 135–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. Part II: stiff initial value problems. Numer. Algorithms 40(3), 285–303 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrio, R.: On the A-stability of Runge–Kutta collocation methods based on orthogonal polynomials. SIAM J. Numer. Anal. 36(4), 1291–1303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Sandberg, K.: ODE solvers using band-limited approximations. J. Comput. Phys. 265, 156–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boussinesq, J.: Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant an liquide contenu dans ce canal de vitesses sensiblement pareilles de la surface anfond, liouvilles. J. Math. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  8. Boussinesq, J: Essai sur la théorie des eaux courantes. Imprimerie nationale (1877)

  9. Bratsos, A.G.: A second order numerical scheme for the improved Boussinesq equation. Phys. Lett. A 370(2), 145–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bratsos, A.G.: A predictor-corrector scheme for the improved Boussinesq equation. Chaos Solitons Fractals 40(5), 2083–2094 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  12. Bu, S., Huang, J., Minion, M.: Semi-implicit Krylov deferred correction methods for differential algebraic equations. Math. Comput. 81(280), 2127–2157 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  15. Causley, M., Christlieb, A., Wolf, E.: Method of lines transpose: an efficient unconditionally stable solver for wave propagation. J. Sci. Comput. 70(2), 896–921 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, W., Wang, X., Yu, Y.: Reducing the computational requirements of the differential quadrature method. Numer. Methods Partial Differ. Equ. 12, 565–577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A fourier pseudospectral method for the good Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chew, W.C.: Waves and Fields in Inhomogeneous Media, vol. 522. IEEE Press, New York (1995)

    Google Scholar 

  19. Christlieb, A., Liu, Y., Xu, Z.: High order operator splitting methods based on an integral deferred correction framework. J. Comput. Phys. 294, 224–242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Christlieb, A., Ong, B., Qiu, J.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crockatt, M., Christlieb, A., Garrett, C.K., Hauck, C.: An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction. J. Comput. Phys. 346, 212–241 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Jager, E.M.: On the origin of the Korteweg–de Vries equation. arXiv:math/0602661 (2006)

  23. Duarte, M., Emmett, M.: High order schemes based on operator splitting and deferred corrections for stiff time dependent PDEs. arXiv:1407.0195v2 (2016)

  24. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dutt, A., Gu, M., Rokhlin, V.: Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM J. Numer. Anal. 33(5), 1689–1711 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ergin, A., Shanker, B., Michielssen, E.: Time domain fast multipole methods: a pedestrian approach. IEEE Antennas Propag. Mag. 41(4), 39–53 (1999)

    Article  Google Scholar 

  27. Ethridge, F., Greengard, L.: A new fast-multipole accelerated poisson solver in two dimensions. SIAM J. Sci. Comput. 23(3), 741–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Farah, L., Scialom, M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38(3), 368–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gottlieb, D., Orszag, S.S.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  31. Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28, 1071–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Greengard, L., Strain, J.: A fast algorithm for the evaluation of heat potentials. Commun. Pure Appl. Math. 43(8), 949–963 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Greengard, L., Strain, J.: The fast gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)

  35. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  36. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214, 633–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, J., Jia, J., Minion, M.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221(2), 739–760 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic problems. J. Comput. Phys. 227(3), 1739–1753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kato, T.: Nonlinear schrödinger equations. In: Schrödinger operators, pp. 218–263. Springer, 1989

  40. Kelly, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  41. Kelly, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  42. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Korteweg, D.J., De Vries, G.: Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 39(240), 422–443 (1895)

  44. Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34(3), A1296–A1315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lai, J., Greengard, L., O’Neil, M.: Robust integral formulations for electromagnetic scattering from three-dimensional cavities. J. Comput. Phys. 345, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Layton, A., Minion, M.: Implications of the choice of predictors for semi-implicit picard integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 2(1), 1–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Linares, F., Scialom, M.: Asymptotic behavior of solutions of a generalized Boussinesq type equation. Nonlinear Anal. Theory Methods Appl. 25(11), 1147–1158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. López-Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 7, 71–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5(4), 946–957 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Oh, S., Stefanov, A.: Improved local well-posedness for the periodic good Boussinesq equation. J. Differ. Equ. 254(10), 4047–4065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ohmer, K.B., Stetter, H.J. (eds.): Defect Correction Methods. Theory and Applications. Springer, New York (1984)

    Google Scholar 

  52. Ortega, T., De Frutos, J., Sanz-Serna, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109–122 (1991)

    MathSciNet  MATH  Google Scholar 

  53. Ortega, T., Sanz-Serna, J.M.: Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation. Numer. Math. 58(1), 215–229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Pereyra, V.: Iterated deferred corrections for nonlinear operator equations. Numer. Math. 10(4), 316–323 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  55. Petzold, L.R.: A description of DASSL: a differential-algebraic system solver. SAND82-8637, Sandia National Lab (1982)

  56. Qu, W., Brandon, N., Chen, D., Huang, J., Kress, T.: A numerical framework for integrating deferred correction methods to solve high order collocation formulations of ODEs. J. Sci. Comput. 68, 484–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. Shidooka, H., Otani, Y., Nishimura, N.: A time domain fast multipole boundary integral equation method for anisotropic elastodynamics in 3d. J. Appl. Mech. 11, 109–116 (2008)

    Article  Google Scholar 

  59. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  60. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. Siam, Philadelphia (1997)

    Book  MATH  Google Scholar 

  61. Wang, H., Lei, T., Li, J., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations. Int. J. Numer. Methods Eng. 70(7), 812–839 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “Good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Zhang and X. Yue were supported by NSFC-11271281, J. Huang was supported by NSF DMS-1217080, and C. Wang was supported by NSF DMS-1418689. Their supports are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, J., Wang, C. et al. On the Operator Splitting and Integral Equation Preconditioned Deferred Correction Methods for the “Good” Boussinesq Equation. J Sci Comput 75, 687–712 (2018). https://doi.org/10.1007/s10915-017-0552-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0552-2

Keywords

Mathematics Subject Classification

Navigation