Abstract
We study two numerical methods for the “Good” Boussinesq (GB) equation. Both methods are designed to solve the spatial-temporal pseudo-spectral collocation formulations of the GB equation using the deferred correction methods in one time marching step, where the Fourier series based pseudo-spectral formulation is applied in the spatial direction. The main idea is to iteratively apply a low order method to solve an error equation and refine the provisional solutions until they converge to the high order pseudo-spectral solutions both in space and time. In the first method, an operator splitting approach is introduced as the low order preconditioner in the deferred correction procedure for the temporal Gauss collocation formulation of the original GB equation. The method shows good numerical properties when the deferred correction procedure is convergent and the accuracy requirement is achievable. However, due to the stiffness of the linear differential operators, the Krylov deferred correction (KDC) method has to be applied in order to make the iterations converge. And also, due to the spectral differentiation operator involved, the condition number of the algorithm scales as \(O(N^4)\), where N is the number of Fourier terms in the spatial direction. To improve the numerical stability and efficiency, an integral equation approach is applied to “precondition” the GB equation in the second proposed numerical method, by inverting the linear terms of the GB equation analytically. As the nonlinear term of the GB equation is non-stiff, the simple forward Euler’s method preconditioned spectral deferred correction (SDC) iterations converge more efficiently than existing Jacobian-Free Newton–Krylov (JFNK) based KDC implementations, and the condition number of the new formulation is O(1), which leads to a machine precision accuracy at each discrete time step.











Similar content being viewed by others
References
Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)
Attili, B.S.: The adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Methods Partial Differ. Equ. 22(6), 1337–1347 (2006)
Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmuller, E.: Modified defect correction algorithms for ODEs. Part I. General Theory Numer. Algorithms 36, 135–156 (2004)
Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. Part II: stiff initial value problems. Numer. Algorithms 40(3), 285–303 (2005)
Barrio, R.: On the A-stability of Runge–Kutta collocation methods based on orthogonal polynomials. SIAM J. Numer. Anal. 36(4), 1291–1303 (1999)
Beylkin, G., Sandberg, K.: ODE solvers using band-limited approximations. J. Comput. Phys. 265, 156–171 (2014)
Boussinesq, J.: Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant an liquide contenu dans ce canal de vitesses sensiblement pareilles de la surface anfond, liouvilles. J. Math. 17, 55–108 (1872)
Boussinesq, J: Essai sur la théorie des eaux courantes. Imprimerie nationale (1877)
Bratsos, A.G.: A second order numerical scheme for the improved Boussinesq equation. Phys. Lett. A 370(2), 145–147 (2007)
Bratsos, A.G.: A predictor-corrector scheme for the improved Boussinesq equation. Chaos Solitons Fractals 40(5), 2083–2094 (2009)
Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1987)
Bu, S., Huang, J., Minion, M.: Semi-implicit Krylov deferred correction methods for differential algebraic equations. Math. Comput. 81(280), 2127–2157 (2012)
Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)
Causley, M., Christlieb, A., Wolf, E.: Method of lines transpose: an efficient unconditionally stable solver for wave propagation. J. Sci. Comput. 70(2), 896–921 (2017)
Chen, W., Wang, X., Yu, Y.: Reducing the computational requirements of the differential quadrature method. Numer. Methods Partial Differ. Equ. 12, 565–577 (1996)
Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A fourier pseudospectral method for the good Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202–224 (2015)
Chew, W.C.: Waves and Fields in Inhomogeneous Media, vol. 522. IEEE Press, New York (1995)
Christlieb, A., Liu, Y., Xu, Z.: High order operator splitting methods based on an integral deferred correction framework. J. Comput. Phys. 294, 224–242 (2015)
Christlieb, A., Ong, B., Qiu, J.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010)
Crockatt, M., Christlieb, A., Garrett, C.K., Hauck, C.: An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction. J. Comput. Phys. 346, 212–241 (2017)
De Jager, E.M.: On the origin of the Korteweg–de Vries equation. arXiv:math/0602661 (2006)
Duarte, M., Emmett, M.: High order schemes based on operator splitting and deferred corrections for stiff time dependent PDEs. arXiv:1407.0195v2 (2016)
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)
Dutt, A., Gu, M., Rokhlin, V.: Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM J. Numer. Anal. 33(5), 1689–1711 (1996)
Ergin, A., Shanker, B., Michielssen, E.: Time domain fast multipole methods: a pedestrian approach. IEEE Antennas Propag. Mag. 41(4), 39–53 (1999)
Ethridge, F., Greengard, L.: A new fast-multipole accelerated poisson solver in two dimensions. SIAM J. Sci. Comput. 23(3), 741–760 (2001)
Farah, L., Scialom, M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)
Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38(3), 368–399 (2009)
Gottlieb, D., Orszag, S.S.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)
Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28, 1071–1080 (1991)
Greengard, L., Strain, J.: A fast algorithm for the evaluation of heat potentials. Commun. Pure Appl. Math. 43(8), 949–963 (1990)
Greengard, L., Strain, J.: The fast gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)
Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)
Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214, 633–656 (2006)
Huang, J., Jia, J., Minion, M.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221(2), 739–760 (2007)
Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic problems. J. Comput. Phys. 227(3), 1739–1753 (2008)
Kato, T.: Nonlinear schrödinger equations. In: Schrödinger operators, pp. 218–263. Springer, 1989
Kelly, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)
Kelly, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)
Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)
Korteweg, D.J., De Vries, G.: Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 39(240), 422–443 (1895)
Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34(3), A1296–A1315 (2012)
Lai, J., Greengard, L., O’Neil, M.: Robust integral formulations for electromagnetic scattering from three-dimensional cavities. J. Comput. Phys. 345, 1–16 (2017)
Layton, A., Minion, M.: Implications of the choice of predictors for semi-implicit picard integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 2(1), 1–34 (2007)
Linares, F., Scialom, M.: Asymptotic behavior of solutions of a generalized Boussinesq type equation. Nonlinear Anal. Theory Methods Appl. 25(11), 1147–1158 (1995)
López-Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 7, 71–84 (1988)
Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5(4), 946–957 (1984)
Oh, S., Stefanov, A.: Improved local well-posedness for the periodic good Boussinesq equation. J. Differ. Equ. 254(10), 4047–4065 (2013)
Ohmer, K.B., Stetter, H.J. (eds.): Defect Correction Methods. Theory and Applications. Springer, New York (1984)
Ortega, T., De Frutos, J., Sanz-Serna, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109–122 (1991)
Ortega, T., Sanz-Serna, J.M.: Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation. Numer. Math. 58(1), 215–229 (1990)
Pereyra, V.: Iterated deferred corrections for nonlinear operator equations. Numer. Math. 10(4), 316–323 (1967)
Petzold, L.R.: A description of DASSL: a differential-algebraic system solver. SAND82-8637, Sandia National Lab (1982)
Qu, W., Brandon, N., Chen, D., Huang, J., Kress, T.: A numerical framework for integrating deferred correction methods to solve high order collocation formulations of ODEs. J. Sci. Comput. 68, 484–520 (2016)
Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)
Shidooka, H., Otani, Y., Nishimura, N.: A time domain fast multipole boundary integral equation method for anisotropic elastodynamics in 3d. J. Appl. Mech. 11, 109–116 (2008)
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)
Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. Siam, Philadelphia (1997)
Wang, H., Lei, T., Li, J., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations. Int. J. Numer. Methods Eng. 70(7), 812–839 (2007)
Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “Good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)
Acknowledgements
C. Zhang and X. Yue were supported by NSFC-11271281, J. Huang was supported by NSF DMS-1217080, and C. Wang was supported by NSF DMS-1418689. Their supports are thankfully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, C., Huang, J., Wang, C. et al. On the Operator Splitting and Integral Equation Preconditioned Deferred Correction Methods for the “Good” Boussinesq Equation. J Sci Comput 75, 687–712 (2018). https://doi.org/10.1007/s10915-017-0552-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0552-2
Keywords
- “Good” Boussinesq equation
- Deferred correction methods
- Collocation formulations
- Preconditioners
- Integral equation method