Skip to main content
Log in

A Semi-smooth Newton Method for Inverse Problem with Uniform Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study inverse problems where observations are corrupted by uniform noise. By using maximum a posteriori approach, an \(L_\infty \)-norm constrained minimization problem can be formulated for uniform noise removal. The main difficulty of solving such minimization problem is how to deal with non-differentiability of the \(L_\infty \)-norm constraint and how to estimate the level of uniform noise. The main contribution of this paper is to develop an efficient semi-smooth Newton method for solving this minimization problem. Here the \(L_\infty \)-norm constraint can be handled by active set constraints arising from the optimality conditions. In the proposed method, linear systems based on active set constraints are required to solve in each Newton step. We also employ the method of moments (MoM) to estimate the level of uniform noise for the minimization problem. The combination of the proposed method and MoM is quite effective for solving inverse problems with uniform noise. Numerical examples are given to demonstrate that our proposed method outperforms the other testing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The relative difference is defined by \(\mathrm {RD} = \frac{\left\| \mathbf{u}^{(k+1)}-\mathbf{u}^{(k)}\right\| _2^2}{\left\| \mathbf{u}^{(k+1)}\right\| _2^2}.\)

References

  1. Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. J. Math. Imaging Vis. 23(2), 199–211 (2005)

    Article  MathSciNet  Google Scholar 

  2. Andrew, H., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  3. Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover Publications, Mineola (2003)

    MATH  Google Scholar 

  4. Bar, L., Brook, A., Schen, N., Kiryati, N.: Deblurring of color images corrupted by salt-and-pepper noise. IEEE Trans. Image Process. 16, 1101–1111 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bar, L., Schen, N., Kiryati, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70, 279–298 (2006)

    Article  Google Scholar 

  6. Bertero, M., De Mol, C., Pike, E.R.: Linear inverse problems with discrete data. I. General formulation and singular system analysis. Inverse Prob. 1(4), 301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bjorck, A.: Numerical methods for least squares problems. Number 51, Society for Industrial Mathematics (1996)

  8. Bovik, A.: Handbook of Image and Video Processing. Academic Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Bredies, K., Holler, M.: A total variation-based JPEG decompression model. SIAM J. Imaging Sci. 5(1), 366–393 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, Hoboken (1983)

    MATH  Google Scholar 

  13. Clason, C.: \(l^\infty \) fitting for inverse problems with uniform noise. Inverse Prob. 28(10), 104007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clason, C., Ito, K., Kunisch, K.: Minimal invasion: an optimal \(l_\infty \) state constraint problem. ESAIM Math. Model. Numer. Anal. 45(03), 505–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  16. Griesse, R., Lorenz, D.: A semismooth newton method for tikhonov functionals with sparsity constraints. Inverse Prob. 24(3), 035007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hans, E., Raasch, T.: Global convergence of damped semismooth newton methods for \(l_1\) Tikhonov regularization. Inverse Prob. 31(2), 025005 (2015)

    Article  MATH  Google Scholar 

  18. Ito, K., Kunisch, K.: Semi-smooth newton methods for variational inequalities of the first kind. ESAIM. Math. Model. Numer. Anal. 37(01), 41–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jung, C., Jiao, L., Qi, H., Sun, T.: Image deblocking via sparse representation. Signal Process. Image Commun. 27(6), 663–677 (2012)

    Article  Google Scholar 

  20. Kotz, S., Van Dorp, J.: Other Continuous Families of Distributions with Bounded Support and Applications. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  21. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ng, M., Qi, L., Yang, Y., Huang, Y.: On semismooth Newton’s methods for total variation minimization. J. Math. Imaging Vis. 27, 265–276 (2007)

    Article  MathSciNet  Google Scholar 

  23. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, J., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3(3), 443–465 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1–3), 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schay, G.: Introduction to Probability with Statistical Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  27. Sun, D., Cham, W.: Postprocessing of low bit-rate block dct coded images based on a fields of experts prior. IEEE Trans. Image Process. 16(11), 2743–2751 (2007)

    Article  MathSciNet  Google Scholar 

  28. Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. PhD thesis, Habilitation thesis, Fakultät für Mathematik, Technische Universität München (2002)

  29. Williams, J., Kalogiratou, Z.: Least squares and chebyshev fitting for parameter estimation in ODEs. Adv. Comput. Math. 1(3), 357–366 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, X., Bao, P.: \(l_\infty \); constrained high-fidelity image compression via adaptive context modeling. IEEE Trans. Image Process. 9(4), 536–542 (2000)

    Article  MATH  Google Scholar 

  31. Yang, Y., Galatsanos, N., Katsaggelos, A.: Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images. IEEE Trans. Circuits Syst. Video Technol. 3(6), 421–432 (1993)

    Article  Google Scholar 

  32. Yang, Y., Galatsanos, N.P., Katsaggelos, A.K.: Projection-based spatially adaptive reconstruction of block-transform compressed images. IEEE Trans. Image Process. 4(7), 896–908 (1995)

    Article  Google Scholar 

  33. Zhang, Z., Wen, Y.: Primal-dual approach for uniform noise removal. In: First International Conference on Information Science and Electronic Technology (ISET 2015), pp. 103–106 (2015)

  34. Zhen, L., Delp, E.: Block artifact reduction using a transform-domain Markov random field model. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1583–1593 (2005)

    Article  Google Scholar 

  35. Zhou, J., Wu, X., Zhang, L.: \(l_2\) restoration of \(l_\infty \)-decoded images via soft-decision estimation. IEEE Trans. Image Process. 21(12), 4797–4807 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees and the editor for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Wei Wen.

Additional information

Y.-W. Wen: Research supported in part by the Construct Program of the Key Discipline in Hunan Province and NSFC Grant No. 11361030. W.-K. Ching: Research supported in part by Research Grants Council of Hong Kong under Grant No. 17301214, HKU Strategic Research Theme on Computation and Information, and National Natural Science Foundation of China under Grant No. 11671158. M. Ng: Research supported in part by HKRGC GRF 12306616 and 12203317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, YW., Ching, WK. & Ng, M. A Semi-smooth Newton Method for Inverse Problem with Uniform Noise. J Sci Comput 75, 713–732 (2018). https://doi.org/10.1007/s10915-017-0557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0557-x

Keywords

Navigation