Skip to main content
Log in

Conservative Local Discontinuous Galerkin Method for Compressible Miscible Displacements in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Guo et al. (Appl Math Comput 259:88–105, 2015), a nonconservative local discontinuous Galerkin (LDG) method for both flow and transport equations was introduced for the one-dimensional coupled system of compressible miscible displacement problem. In this paper, we will continue our effort and develop a conservative LDG method for the problem in two space dimensions. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) norm for not only the solution itself but also the auxiliary variables will be derived. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments will be given to confirm the accuracy and efficiency of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problem of low regularity. SIAM J. Numer. Analy. 47, 3720–3743 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bell, J., Dawson, C.N., Shubin, G.R.: An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions. J. Comput. Phys. 74, 1–24 (1988)

    Article  MATH  Google Scholar 

  4. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1975)

    Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cui, M.: Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem. J. Comput. Appl. Math. 214, 617–636 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Douglas Jr., J., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41, 441–459 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element of finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numér. 17, 249–256 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér. 17, 17–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelfand, I.M.: Some questions of analysis and differential equations. Am. Math. Soc. Transl. 26, 201–219 (1963)

    MathSciNet  Google Scholar 

  14. Guo, H., Zhang, Q., Wang, J.: Error analysis of the semi-discrete local discontinuous Galerkin method for compressible miscible displacement problem in porous media. Appl. Math. Comput. 259, 88–105 (2015)

    MathSciNet  Google Scholar 

  15. Guo, H., Yu, F., Yang, Y.: Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71, 615–633 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hurd, A.E., Sattinger, D.H.: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients. Trans. Am. Math. Soc. 132, 159–174 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8, 252–283 (2011)

    MATH  MathSciNet  Google Scholar 

  18. Johnson, C.: Streamline Diffusion Methods for Problems in Fluid Mechanics. Finite Element in Fluids VI. Wiley, New York (1986)

    Google Scholar 

  19. Li, X., Rui, H., Xu, W.: A new MCC–MFE method for compressible miscible displacement in porous media. J. Comput. Appl. Math. 302, 139–156 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rivière, B.: Discontinuous Galerkin finite element methods for solving the miscible displacement problem in porous media. In: Ph.D. thesis, The University of Texas at Austin (2000)

  21. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sun, S., Rivière, B., Wheeler, M.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In: Chan, T., et al. (eds.) Recent Progress in Computational and Applied PDEs, pp. 323–351. Kluwer Academic Publishers, Plenum Press, Dordrecht, NewYork (2002)

    Chapter  Google Scholar 

  23. Sun, S., Wheeler, M.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  Google Scholar 

  26. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time marching for multi-dimensional convectiondiffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)

    Article  MATH  Google Scholar 

  27. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195, 3430–3447 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)

    Article  MathSciNet  Google Scholar 

  31. Yuan, Y.: Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Chin. Sci. Bull. 22, 2027–2032 (1996)

    Google Scholar 

  32. Zhang, J., Yang, D., Shen, S., Zhu, J.: A new MMOCAA-MFE method for compressible miscible displacement in porous media. Appl. Numer. Math. 80, 65–80 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo.

Additional information

Supported by National Natural Science Foundation of China Grants 11571367 and 11601536, and the Fundamental Research Funds for the Central Universities and Michigan Technological University Research Excellence Fund Scholarship and Creativity Grant 1605052.

Appendix: Proof of Lemma 3.1

Appendix: Proof of Lemma 3.1

Recall that we have chosen the initial condition \(c_{h}^{0}=P^{+}c_{0}, \mathbf {u}_{h}^{0}=\mathbf {\Pi ^{-}}\mathbf {u}_{0}\), where \(\mathbf {u}_{0}=-a(c_{0})\nabla p_0\), and \(\widehat{p_{h}}=p_{h}^{+}, \widehat{\mathbf {u}_{h}}=\mathbf {u}_{h}^{-}, \widehat{\mathbf {z}_{h}}=\mathbf {z}_{h}^{-}, \widehat{c_{h}}=c_{h}^{+}\). For simplicity, we will drop the 0 in the superscripts and subscripts in this section. It is clear that (3.15) and (3.16) hold. Taking the test function \(\zeta ={\xi _{p}}_{t}\) and summing over K in (4.10), we have

$$\begin{aligned}&\Big (d(c){\xi _{p}}_{t},{\xi _{p}}_{t}\Big )=\Big (d(c){\eta _{p}}_{t},{\xi _{p}}_{t}\Big )+\Big ({p_{h}}_t(d(c)-d(c_h)),{\xi _{p}}_{t})\Big ), \end{aligned}$$
(A.1)

where we have used \(\mathbf {u}_{h}=\mathbf {\Pi ^{-}}\mathbf {u}, \widehat{\mathbf {u}_{h}}=\mathbf {u}_{h}^{-}\) and the property of the projection (4.3). Using the Schwartz inequality, we can get

$$\begin{aligned} \Vert d^{\frac{1}{2}}(c){\xi _{p}}_{t}\Vert ^{2}\le C\Vert {\eta _{p}}_{t}\Vert \Vert {\xi _{p}}_{t}\Vert +C\Vert c-c_{h}\Vert \Vert {\xi _{p}}_{t}\Vert , \end{aligned}$$
(A.2)

By Lemma 4.2 and (3.15), we easily prove

$$\begin{aligned} \Vert {\xi _{p}}_{t}\Vert \le Ch^{k+1}. \end{aligned}$$
(A.3)

Similarly, taking the test function \(\mathbf {w}=\varvec{\xi }_{s}\) and summing over K in (4.7), we have

$$\begin{aligned} (\varvec{\xi }_{s},\varvec{\xi }_{s})=(\varvec{\eta }_{s},\varvec{\xi }_{s})-\mathcal {D}(\eta _{c},\varvec{\xi }_{s}), \end{aligned}$$
(A.4)

where we have used \(c_{h}=P^{+}c\). Using the Schwartz inequality and the Lemma 4.3, we can get

$$\begin{aligned} \Vert \varvec{\xi }_{s}\Vert ^{2}\le \Vert \varvec{\xi }_{s}\Vert \Vert \varvec{\eta }_{s}\Vert +Ch^{k+1}\Vert c\Vert _{k+2}\Vert \varvec{\xi }_{s}\Vert . \end{aligned}$$
(A.5)

By Lemma 4.2, we easily prove

$$\begin{aligned} \Vert \varvec{\xi }_{s}\Vert \le Ch^{k+1}, \end{aligned}$$
(A.6)

By the standard approximation results, (3.17) and (3.18) hold. At last we estimate \(p-p_{h}\), following the technique in [17]. By (3.9) the initial data \(p_{h}\) is the solution of the following equations

$$\begin{aligned}&(A(c_{h})\mathbf {u}_{h},\varvec{\theta })_K-(p_{h},\nabla \cdot \varvec{\theta })_K +\langle \widehat{p_{h}},\varvec{\theta }\cdot \varvec{\nu }_{K}\rangle _{\partial _K}=0, \end{aligned}$$
(A.7)

and also satisfies

$$\begin{aligned}&(p-p_{h},1)=0. \end{aligned}$$
(A.8)

From (4.9), we have

$$\begin{aligned}&(A(c)\mathbf {u}-A(c_{h})\mathbf {u}_{h},\varvec{\theta })_K-(p-p_{h},\nabla \cdot \varvec{\theta })_K +\langle p-\widehat{p_{h}},\varvec{\theta }\cdot \varvec{\nu }_{K}\rangle _{\partial _K}=0. \end{aligned}$$
(A.9)

We use \(\mathbf {u}_{h}\) to find a well-defined \(p_{h}\), and we only need to prove the uniqueness. If there are two solutions \(p_{1}\) and \(p_{2}\) satisfying (A.7) and (A.8), then we can easily get

$$\begin{aligned}&(p_{1}-p_{2},\nabla \cdot \varvec{\theta })_K -\langle \widehat{p_{1}}-\widehat{p_{2}},\varvec{\theta }\cdot \varvec{\nu }_{K}\rangle _{\partial _K}=0, \end{aligned}$$
(A.10)
$$\begin{aligned}&(p_{1}-p_{2},1)=0. \end{aligned}$$
(A.11)

We consider the elliptic linear problem

$$\begin{aligned}&-\varvec{\zeta }^{*}=\nabla {\xi }^{*}, \quad \; \text{ in }\quad \Omega , \end{aligned}$$
(A.12)
$$\begin{aligned}&{\eta }^{*}=\nabla \cdot \varvec{\zeta }^{*}, \quad \; \text{ in }\quad \Omega , \end{aligned}$$
(A.13)

subject to periodic boundary conditions. To make the problem well-defined, we assume that the average of \({\xi }^{*}\) on \(\Omega \) is a given constant and that of \(\eta ^{*}\) is zero. We have the elliptic regularity result

$$\begin{aligned} \Vert \varvec{\zeta }^{*}\Vert _{H^{1}(\Omega )}+\Vert {\xi }^{*}\Vert _{H^{2}(\Omega )}\le C\Vert {\eta }^{*}\Vert . \end{aligned}$$
(A.14)

Taking \(\eta ^{*}=p_{1}-p_{2}\) and \(\widehat{p_i}=p_i^{+}, i=1,2\), we get

$$\begin{aligned}&(p_{1}-p_{2},p_{1}-p_{2})_{K}\nonumber \\&\quad =(p_{1}-p_{2},\nabla \cdot \varvec{\zeta }^{*})_K\nonumber \\&\quad = (p_{1}-p_{2},\nabla \cdot (\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}))_K+(p_{1}-p_{2},\nabla \cdot \Pi \varvec{\zeta }^{*})_K\nonumber \\&\quad = (p_{1}-p_{2},\nabla \cdot (\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}))_K-\langle \widehat{p_{1}}-\widehat{p_{2}},(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}) \cdot \varvec{\nu }_{K}\rangle _{\partial _K} +\langle \widehat{p_{1}}-\widehat{p_{2}},\varvec{\zeta }^{*} \cdot \varvec{\nu }_{K}\rangle _{\partial _K}\nonumber \\&\quad = -(\nabla (p_{1}-p_{2}),\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K+\langle p_{1}-p_{2},(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\cdot \varvec{\nu _K}\rangle _{\partial _K}\nonumber \\&\qquad -\langle \widehat{p_{1}}-\widehat{p_{2}},(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}) \cdot \varvec{\nu }_{K}\rangle _{\partial _K} +\langle \widehat{p_{1}}-\widehat{p_{2}},\varvec{\zeta }^{*} \cdot \varvec{\nu }_{K}\rangle _{\partial _K}\end{aligned}$$
(A.15)

where the third step follows from (A.10) and the last equality is based on integration by parts. We take \(\Pi \varvec{\zeta }^{*}=\Pi ^{-}\varvec{\zeta }^{*}\) and sum over K. By the continuity of \(\varvec{\zeta }^{*}\) and the definition of the projection \(\Pi ^{-}\), we obtain

$$\begin{aligned} (p_{1}-p_{2},p_{1}-p_{2})=0 \end{aligned}$$
(A.16)

Then we get \(p_{1}=p_{2}\). We have proved that \(p_{h}\) is well-defined. In the following, we estimate \(\Vert p-p_{h}\Vert \). We use the same technique above and take \(\eta ^{*}=p-p_{h}\) to obtain

$$\begin{aligned}&(p-p_{h},p-p_{h})_{K}\nonumber \\&\quad = (p-p_{h},\nabla \cdot \varvec{\zeta }^{*})_K\nonumber \\&\quad = (p-p_{h},\nabla \cdot (\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}))_K+(p-p_{h},\nabla \cdot \Pi \varvec{\zeta }^{*})_K\nonumber \\&\quad =(p-p_{h},\nabla \cdot (\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*}))_K -(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K\nonumber \\&\qquad -\langle p-\widehat{p_h},(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\cdot \varvec{\nu _K}\rangle _{\partial K} +(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*})_K +\langle p-\widehat{p_h},\varvec{\zeta }^{*}\cdot \varvec{\nu _K}\rangle _{\partial K} \nonumber \\&\quad =-(\nabla (p-p_{h}),\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K +\langle p-p_h,(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\cdot \varvec{\nu _K}\rangle _{\partial K} \nonumber \\&\qquad -\,(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K -\langle p-\widehat{p_h},(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\cdot \varvec{\nu _K}\rangle _{\partial K}\nonumber \\&\qquad +\,(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*})_K +\langle p-\widehat{p_h},\varvec{\zeta }^{*}\cdot \varvec{\nu _K}\rangle _{\partial K}\nonumber \\&\quad =-(\nabla (p-p_{h}),\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K +\langle \widehat{p_h}-p_h,(\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\cdot \varvec{\nu _K}\rangle _{\partial K} \nonumber \\&\qquad -\,(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})_K +(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*})_K \nonumber \\&\qquad +\, \langle p-\widehat{p_h},\varvec{\zeta }^{*}\cdot \varvec{\nu _K}\rangle _{\partial K} \end{aligned}$$
(A.17)

where the third one follows from (A.9) and the fourth equality is based on the integrate by parts. Recalling that \(\widehat{p_{h}}=p_{h}^{+}\), we take \(\Pi \varvec{\zeta }^{*}=\Pi ^{-}\varvec{\zeta }^{*}\) and sum over K. By the continuity of \(\varvec{\zeta }^{*}\) and the definition of the projection \(\varvec{\Pi }^{-}\), we obtain

$$\begin{aligned} \Vert p-p_{h}\Vert ^{2}= & {} -(\nabla \eta _p^{},\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})-(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\nonumber \\&+(A(c)\mathbf {u}-A(c_h)\mathbf {u}_h,\varvec{\zeta }^{*})\nonumber \\= & {} -(\nabla {\eta _p},\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})-(A(c)(\mathbf {u}-\mathbf {u}_h),\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\nonumber \\&-((A(c)-A(c_h))\mathbf {u}_h,\varvec{\zeta }^{*}-\Pi \varvec{\zeta }^{*})\nonumber \\&+(A(c_0)(\mathbf {u}-\mathbf {u}_h),\varvec{\zeta }^{*})+((A(c)-A(c_h))\mathbf {u}_h,\varvec{\zeta }^{*})\nonumber \\\le & {} Ch^{k+1}\Vert \varvec{\zeta }^{*}\Vert _{H^{1}(\Omega )}+Ch^{k+2}\Vert \varvec{\zeta }^{*}\Vert _{H^{1}(\Omega )}+Ch^{k+1}\Vert \varvec{\zeta }^{*}\Vert \nonumber \\\le & {} Ch^{k+1}\Vert \varvec{\zeta }^{*}\Vert _{H^{1}(\Omega )}\nonumber \\\le & {} Ch^{k+1}\Vert p-p_{h}\Vert , \end{aligned}$$
(A.18)

which further implies

$$\begin{aligned} \Vert p-p_{h}\Vert \le Ch^{k+1}. \end{aligned}$$
(A.19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Guo, H., Chuenjarern, N. et al. Conservative Local Discontinuous Galerkin Method for Compressible Miscible Displacements in Porous Media. J Sci Comput 73, 1249–1275 (2017). https://doi.org/10.1007/s10915-017-0571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0571-z

Keywords

Mathematics Subject Classification

Navigation