Abstract
This paper is devoted to the construction and analysis of an adapted and nonlinear multiresolution algorithm designed for interpolation or approximation of discontinuous univariate functions. The adaption attained allows to avoid numerical artifacts that appear when using linear algorithms and, at the same time, to obtain a high order of accuracy close to the singularities. It is known that linear algorithms are stable and convergent for smooth functions, but diffusion and Gibbs effect appear if the functions are piecewise continuous. Our aim is to develop an algorithm for function approximation with full accuracy that is capable to adapt to corners (kinks) and jump discontinuities, that uses a centered stencil and that does not use extrapolation. In order to reach this goal, we will need some information about the jumps in the function that we want to approximate and its derivatives. If this information is available, the algorithm is the most compact possible in the sense that the stencil is fixed and we do not need a stencil selection procedure as other algorithms do, such as ENO subcell resolution (ENO-SR). If the information about the jumps is not available, we will show a technique to approximate it. The algorithm is based on linear interpolation plus correction terms that provide the desired accuracy close to corners or jump discontinuities.










Similar content being viewed by others
References
de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1980)
Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)
Harten, A.: Multiresolution representation of data II. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)
Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)
Amat, S., Aràndiga, F., Cohen, A., Donat, R., Garcia, G., von Oehsen, M.: Data compression with ENO schemes: a case study. Appl. Comput. Harmon. Anal. 11(2), 273–288 (2001)
Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194(2), 632–658 (2004)
Cohen, A., Dyn, N., Matei, B.: Quasi linear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)
Amat, S., Busquier, S., Trillo, J.C.: On multiresolution schemes using a stencil selection procedure: applications to ENO schemes. Numer. Algorithms 44(1), 45–68 (2007)
Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83(1), 148–184 (1989)
Aràndiga, F., Donat, R., Mulet, P.: Adaptive interpolation of images. Signal Process. 83(2), 459–464 (2003)
Aràndiga, F., Cohen, A., Donat, R., Dyn, N.: Interpolation and approximation of piecewise smooth functions. SIAM J. Numer. Anal. 43(1), 41–57 (2005)
Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards \(c^s\) functions with \(s>1\). Math. Comput. 80(80), 959–971 (2011)
Amat, S., Liandrat, J.: On the stability of the PPH nonlinear multiresolution. Appl. Comput. Harm. Anal. 18(2), 198–206 (2005)
Amat, S., Liandrat, J., Ruiz, J., Trillo, J.: On a compact non-extrapolating scheme for adaptive image interpolation. J. Frankl. Inst. 349(5), 1637–1647 (2012)
Amat, S., Dadourian, K., Liandrat, J., Ruiz, J., Trillo, J.C.: On a class of \(L^1\)-stable nonlinear cell-average multiresolution schemes. J. Comput. Appl. Math. 234(4), 1129–1139 (2010)
Amat, S., Liandrat, J., Ruiz, J., Trillo, J.: On a nonlinear cell-average multiresolution scheme for image compression. SeMA J. 1(60), 75–92 (2012)
Amat, S., Ruiz, J., Trillo, J.C.: Adaptive interpolation of images using a new nonlinear cell-average scheme. Math. Comput. Simul. 82(9), 1586–1596 (2012)
Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv. Comput. Math. 34(3), 253–277 (2011)
Amat, S., Donat, R., Liandrat, J., Trillo, J.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found. Comput. Math. 6(2), 193–225 (2006)
Amat, S., Ruiz, J., Trillo, J.C.: Improving the compression rate versus \(L^1\) error ratio in cell-average error control algorithms. Numer. Algorithms 67(1), 145–162 (2014)
Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algorithms 23(2–3), 175–216 (2000)
Aràndiga, F., Belda, A., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43(2), 158–182 (2010)
Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear 4-point ternary and interpolatory multiresolution scheme eliminating the Gibbs phenomenom. Int. J. Numer. Anal. Model. 2(7), 261–280 (2010)
Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)
Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)
Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics). SIAM, Philadelphia (2006)
Li, Z., Lai, M.-C.: The immersed interface method for the Navier–Stokes equations with singular forces. J. Comput. Phys. 1(171), 822–842 (2001)
Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Inc., Upper Saddle River (2002)
Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representation. Signal Process. 82(4), 587–608 (2002)
Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)
Acknowledgements
We would like to thank the referees for their useful suggestions and comments that, with no doubt, have helped to improve the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Sergio Amat has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714 and through the national research Project MTM2015-64382-P (MINECO/FEDER). Zhilin Li has been partially supported supported by the NSF Grant DMS-1522768. Juan Ruiz has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714, through the national research Project MTM2015-64382-P (MINECO/FEDER) and by the Fundación Seneca through the young researchers program Jiménez de la Espada.
Rights and permissions
About this article
Cite this article
Amat, S., Li, Z. & Ruiz, J. On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method. J Sci Comput 75, 1500–1534 (2018). https://doi.org/10.1007/s10915-017-0596-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0596-3
Keywords
- IIM
- Finite difference methods
- Correction terms
- Multiresolution schemes
- Improved adaption to discontinuities
- Signal processing