Skip to main content
Log in

A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A fast preconditioned penalty method is developed for a system of parabolic linear complementarity problems (LCPs) involving tempered fractional order partial derivatives governing the price of American options whose underlying asset follows a geometry Lévy process with multi-state regime switching. By means of the penalty method, the system of LCPs is approximated with a penalty term by a system of nonlinear tempered fractional partial differential equations (TFPDEs) coupled by a finite-state Markov chain. The system of nonlinear TFPDEs is discretized with the shifted Grünwald approximation by an upwind finite difference scheme which is shown to be unconditionally stable. Semi-smooth Newton’s method is utilized to solve the finite difference scheme as an outer iterative method in which the Jacobi matrix is found to possess Toeplitz-plus-diagonal structure. Consequently, the resulting linear system can be fast solved by the Krylov subspace method as an inner iterative method via fast Fourier transform (FFT). Furthermore, a novel preconditioner is proposed to speed up the convergence rate of the inner Krylov subspace iteration with theoretical analysis. With the above-mentioned preconditioning technique via FFT, under some mild conditions, the operation cost in each Newton’s step can be expected to be \(\mathcal{O}(N\mathrm{log}N)\), where N is the size of the coefficient matrix. Numerical examples are given to demonstrate the accuracy and efficiency of our proposed fast preconditioned penalty method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almendral, A., Oosterlee, C.W.: Accurate evaluation of European and American options under the CGMY process. SIAM J. Sci. Comput. 29(1), 93–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyarchenko, S., Levendorskii, S.: American options in regime-switching models. SIAM J. Control Optim. 48(3), 1353–1376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyarchenko, S., Levendorskii, S.: Non-Gaussian Merton–Black–Scholes theory, vol. 9. World Scientific, Hackensack (2002)

    Book  MATH  Google Scholar 

  6. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–333 (2002)

    Article  Google Scholar 

  7. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance 58(2), 753–777 (2003)

    Article  Google Scholar 

  8. Cartea, A., del-Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Physica A 374(2), 749–763 (2007)

    Article  Google Scholar 

  9. Chan, R.H., Jin, X.: An Introduction to Iterative Toeplitz Solvers, vol. 5. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  10. Chen, M., Deng, W.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37(2), A890–A917 (2015)

    Article  MATH  Google Scholar 

  11. Chen, W., Wang, S.: A penalty method for a fractional order parabolic variational inequality governing American put option valuation. Comput. Math. Appl. 67(1), 77–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Xu, X., Zhu, S.: A predictor–corrector approach for pricing American options under the finite moment log-stable model. Appl. Numer. Math. 97, 15–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cont, R., Tankov, P.: Financial Modelling with Jump Processes, vol. 2. CRC Press, London (2003)

    MATH  Google Scholar 

  14. Dai, M., Zhong, Y.: Penalty methods for continuous time portfolio selection with transaction costs. J. Comput. Finance 13(3), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, R.J., Osakwe, C.-J.U.: Option pricing for pure jump processes with Markov switching compensators. Finance Stoch. 10(2), 250–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions. Numer. Math. 114(1), 27–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, L., Lin, X.: Pricing Bermudan options in Lévy process models. SIAM J. Financ. Math. 4(1), 474–493 (2013)

    Article  MATH  Google Scholar 

  18. Forsyth, P., Vetzal, K.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23(6), 2095–2122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Y., Forsyth, P., Labahn, G.: Methods for pricing American options under regime switching. SIAM J. Sci. Comput. 33(5), 2144–2168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itkin, A., Carr, P.: Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40(1), 63–104 (2012)

    Article  MATH  Google Scholar 

  21. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  22. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lei, S., Fan, D., Chen, X.: A fast strategy for tempered fractional diffusion equations based on circulant preconditioning (submitted)

  24. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lesmana, D., Wang, S.: An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 219(16), 8811–8828 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meng, Q., Ding, D., Sheng, Q.: Preconditioned iterative methods for fractional diffusion models in finance. Numer. Methods Partial Differ. Eqn. 31(5), 1382–1395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moroney, T., Yang, Q.: Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners. J. Comput. Phys. 246, 304–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  31. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sachs, E.W., Strauss, A.K.: Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 58, 1687–1703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3–5 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, I., Wan, J., Forsyth, P.: Robust numerical valuation of European and American options under the CGMY process. J. Comput. Finance 10(4), 31 (2007)

    Article  Google Scholar 

  38. Wang, W., Chen, X., Ding, D., Lei, S.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92(12), 2596–2614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)

    MATH  Google Scholar 

  40. Witte, J.H., Reisinger, C.: A penalty method for the numerical solution of Hamilton–Jacobi–Bellman (HJB) equations in finance. SIAM J. Numer. Anal. 49(1), 213–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yousuf, M., Khaliq, A., Liu, R.: Pricing American options under multi-state regime switching with an efficient L-stable method. Int. J. Comput. Math. 92(12), 2530–2550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng, P., Kwok, Y.: Pricing barrier and Bermudan style options under time-changed Lévy processes: fast Hilbert transform approach. SIAM J. Sci. Comput. 36(3), B450–B485 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Che-Man Cheng and Mr. Yun-Chi Huang in University of Macau for their helpful discussions, and also the referees for their valuable comments and suggestions which improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Ding.

Additional information

This work was supported by the research Grants MYRG2016-00202-FST and MYRG068(Y4-L2)-FST13-DD from University of Macau, 081/2016/A2 and 048/2017/A from Macao Science and Technology Development Fund (FDCT).

Appendices

Appendix A: Derivation of the Eq. (4)

According to the no arbitrage condition and Itô’s formula for switching Lévy process, European claim price must satisfy the following system of partial integro-differential equations [13]:

$$\begin{aligned} \frac{\partial V_s(x,t)}{\partial t}+\mathcal {L} V_s(x,t)-r V_s(x,t)=0,\quad \forall s \in \mathcal{S}, \end{aligned}$$
(22)

where \(\mathcal {L} V_s(x,t)\) is the generator of the switching Lévy process:

$$\begin{aligned} \mathcal {L} V_s(x,t)=m_s\frac{\partial V_s(x,t)}{\partial x}+\frac{1}{2}\sigma _s^2 \frac{\partial V_s^2(x,t)}{\partial x^2}+\sum _{\tilde{s}\ne s}q_{s \tilde{s}}(V_{\tilde{s}}(x,t)-V_s(x,t))\nonumber \\ +\int _{{\mathbb {R}}\backslash \{0\}}(V_s(x+z,t)-V_s(x,t)-z h(z)\frac{\partial V_s(x,t)}{\partial x})\;W_s(dz). \end{aligned}$$

Applying the Fourier transform to (22), by means of the condition (ii) of the intensity matrix \(\mathcal{Q}\) and (3), leads to the following equations \(\forall s \in \mathcal{S}\),

$$\begin{aligned} \frac{\partial \mathcal {F}[V_s(x,t)](\zeta ,t)}{\partial t}+(\varPsi _s(-\zeta )+q_{s s}-r-\mathrm{i}(r-v_s)\zeta )\mathcal {F}[V_s(x,t)](\zeta ,t)\nonumber \\ +\sum _{\tilde{s}\ne s}q_{s \tilde{s}}\mathcal {F}[V_{\tilde{s}}(x,t)](\zeta ,t)=0. \end{aligned}$$
(23)

where the exponential Fourier transform is defined by

$$\begin{aligned} \mathcal {F}[V_s(x,t)](\zeta ,t)\equiv \hat{V}_s(\zeta ,t)=\int ^{\infty }_{-\infty } e^{\mathrm{i} \zeta x} V_s(x,t) dx. \end{aligned}$$

From [8], we have

$$\begin{aligned} \varPsi ^\mathrm{KoBoL}_s(\zeta )=\frac{1}{2}{\sigma _s}^{\alpha _s}\big [p_s(\lambda _s-\mathrm{i} \zeta )^{\alpha _s}+\varsigma _s(\lambda _s+\mathrm{i} \zeta )^{\alpha _s}-{\lambda _s}^{\alpha _s}-\mathrm{i} \zeta {\alpha _s} {\lambda _s}^{\alpha _s-1}(\varsigma _s-p_s)\big ].\nonumber \\ \end{aligned}$$
(24)

By inserting specific characteristic exponent (24) into (23), the system of TFPDEs (4) can be derived from the inverse Fourier transform. To be noted that the Fourier transforms of the left-sided and right-sided tempered fractional operators are given by [10, 32, 33]

$$\begin{aligned}&\mathcal {F}\Big [e^{-\lambda _{s} x}{{_{-\infty }}D^{\alpha _s}_x} [e^{\lambda _{s} x} V_s(x,t)]\Big ]=(\lambda _s-\mathrm{i} \zeta )^{\alpha _s}\hat{V}_s(\zeta ,t),\quad \\&\mathcal {F}\Big [e^{\lambda _{s} x}{_{x}}D^{\alpha _s}_\infty [e^{-\lambda _{s} x} V_s(x,t)]\Big ]=(\lambda _s+\mathrm{i} \zeta )^{\alpha _s}\hat{V}_s(\zeta ,t). \end{aligned}$$

Appendix B: Monotonicity of the Newton’s Iteration

From the algorithm (18),

$$\begin{aligned} \left( \mathcal{M}{_s}-\tau \rho \mathcal{\tilde{I}}_s^k\right) \left( (\bar{u}_s^{(m)})^{k+1}-(\bar{u}_s^{(m)})^{k}\right) +\bar{g}((\bar{u}_s^{(m)})^{k})=0. \end{aligned}$$

Then replacing \(\bar{g}((\bar{u}_s^{(m)})^{k})\) by its definition (17), we have

$$\begin{aligned} \left( \mathcal{M}{_s}-\tau \rho \mathcal{\tilde{I}}_s^k\right) \left( (\bar{u}_s^{(m)})^{k+1}-(\bar{u}_s^{(m)})^{k}\right) -(\bar{u}_s^{(m)})^{0}+\mathcal{M}{_s}(\bar{u}_s^{(m)})^{k}-\tau \rho {\mathcal{N}}^{(m)}_{s}=0, \end{aligned}$$

where \((\bar{u}_s^{(m)})^{0}=\tau f_{s}+u_{s}^{(m-1)}-\tau \sum _{\tilde{s}\in \mathcal{S}}q_{s \tilde{s}}u^{(m-1)}_{\tilde{s}}\).

Noting that \(\mathcal{\tilde{I}}_s^k (\bar{u}_s^{(m)})^{k}-{\mathcal{N}}^{(m)}_{s}=\mathcal{\tilde{I}}_s^k u_s^*\). Finally, the Newton’s method (18) can be simplified to the following algorithm, which gives for all \(s \in \mathcal{S}\),

$$\begin{aligned} \left( \mathcal{M}{_s}-\tau \rho \mathcal{\tilde{I}}_s^k \right) (\bar{u}_s^{(m)})^{k+1}= (\bar{u}_s^{(m)})^{0}-\tau \rho \mathcal{\tilde{I}}_s^k u_s^*{.} \end{aligned}$$
(25)

Given that \(\mathcal{M}_s\) is an M-matrix, by following the idea from [18], we can prove that the Newton’s iteration converges monotonically. For the monotone property, writing equation (25) for iteration \(k\ge 1\) as:

$$\begin{aligned} \left( \mathcal{M}{_s}-\tau \rho \mathcal{\widetilde{I}}_s^{k} \right) (\bar{u}_s^{(m)})^{k}-\tau \rho \left( \mathcal{\widetilde{I}}_s^{k-1}-\mathcal{\widetilde{I}}_s^{k} \right) (\bar{u}_s^{(m)})^{k}= (\bar{u}_s^{(m)})^{0}-\tau \rho \mathcal{\tilde{I}}_s^{k-1} u_s^*. \end{aligned}$$
(26)

Subtracting equation (26) from (25) gives

$$\begin{aligned} \left( \mathcal{M}_s-\tau \rho \mathcal{\tilde{I}}_s^{k} \right) ((\bar{u}_s^{(m)})^{k+1}-(\bar{u}_s^{(m)})^{k})=\tau \rho \left( \mathcal{\widetilde{I}}_s^{k-1}-\mathcal{\widetilde{I}}_s^{k} \right) (u_s^*-(\bar{u}_s^{(m)})^{k}). \end{aligned}$$

Under the both cases: \(u_{n,s}^*-(\bar{u}_{n,s}^{(m)})^{k}\ge 0\) and \(u_{n,s}^*-(\bar{u}_{n,s}^{(m)})^{k}< 0\) in the pointwise, we have

$$\begin{aligned} \left( \mathcal{M}_s-\tau \rho \mathcal{\tilde{I}}_s^{k} \right) ((\bar{u}_s^{(m)})^{k+1}-(\bar{u}_s^{(m)})^{k})\le 0. \end{aligned}$$

Note that all of the elements of the inverse of an M-matrix are nonnegative. Since the matrix \(\mathcal{M}_s-\tau \rho \mathcal{\tilde{I}}_s^{k}\) is an M-matrix, we can see that the Newton’s iteration is monotonically decreasing for the iteration step \(k\ge 1\). Similar with the technique used in [18], we can also prove the uniqueness of the penalty iteration given that the matrix \(\mathcal{M}_s\) is an M-matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, SL., Wang, W., Chen, X. et al. A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models. J Sci Comput 75, 1633–1655 (2018). https://doi.org/10.1007/s10915-017-0602-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0602-9

Keywords

Mathematics Subject Classification