Abstract
We consider a minimization model with total variational regularization, which can be reformulated as a saddle-point problem and then be efficiently solved by the primal–dual method. We utilize the consistent finite element method to discretize the saddle-point reformulation; thus possible jumps of the solution can be captured over some adaptive meshes and a generic domain can be easily treated. Our emphasis is analyzing the convergence of a more general primal–dual scheme with a combination factor for the discretized model. We establish the global convergence and derive the worst-case convergence rate measured by the iteration complexity for this general primal–dual scheme. This analysis is new in the finite element context for the minimization model with total variational regularization under discussion. Furthermore, we propose a prediction–correction scheme based on the general primal–dual scheme, which can significantly relax the step size for the discretization in the time direction. Its global convergence and the worst-case convergence rate are also established. Some preliminary numerical results are reported to verify the rationale of considering the general primal–dual scheme and the primal–dual-based prediction–correction scheme.








Similar content being viewed by others
References
Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 12171229 (1994)
Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)
Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)
Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. Stanford University Press, Stanford (1958)
Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM/MPS, Philadelphia (2006)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, New York (2006)
Bartels, S.: Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)
Bartels, S.: Broken Sobolev space iteration for total variation regularized minimization problems. IMA J. Numer. Anal. 36(2), 493–502 (2016)
Bartels, S., Nochetto, R.H., Salgado, A.J.: Discrete total variation flows without regularization. SIAM J. Numer. Anal. 52(1), 363–385 (2014)
Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(\mathbb{R}^n\). J. Differ. Equ. 184(2), 475–525 (2002)
Blum, E., Oettli, W.: Mathematische Optimierung. Springer, Berlin (1975)
Boţ, R.I., Csetnek, E.R.: On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems. Optimization 64(1), 5–23 (2015)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34(3), 1072–1092 (1997)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chan, R.H., Chen, K.: A multilevel algorithm for simultaneously denoising and deblurring images. SIAM J. Sci. Comput. 32(2), 1043–1063 (2010)
Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36(2), 354–367 (1999)
Chan, T.F., Tai, X.-C.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Chavent, G., Kunisch, K.: Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2, 359–376 (1997)
Chen, Z., Zou, J.: An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37(3), 892–910 (1999)
Dobson, D., Scherzer, O.: Analysis of regularized total variation penalty methods for denoising. Inverse Probl. 12(5), 601–617 (1996)
Dobson, D.C., Santosa, F.: An image-enhancement technique for electrical impedance tomography. Inverse Probl. 10(2), 317–334 (1994)
Dobson, D.C., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56(4), 1181–1198 (1996)
Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)
Elliott, C.M., Smitheman, S.A.: Numerical analysis of the TV regularization and \({H}^{-1}\) fidelity model for decomposing an image into cartoon plus texture. IMA J. Numer. Anal. 29(3), 651–689 (2008)
Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)
Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)
Feng, X.B., Prohl, A.: Analysis of total variation flow and its finite element approximations. ESAIM Math. Model. Numer. Anal. 37(3), 533–556 (2003)
Feng, X., von Oehsen, M., Prohl, A.: Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math. 100(3), 441–456 (2005)
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems. North-Holland Publishing Co., Amsterdam (1983)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)
He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)
He, B.S., Liu, H., Wang, Z., Yuan, X.M.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)
Keung, Y.L., Zou, J.: Numerical identifications of parameters in parabolic systems. Inverse Probl. 14(1), 83–100 (1998)
Li, B., Sun, W.: Linearized FE approximations to a nonlinear gradient flow. SIAM J. Numer. Anal. 52(6), 2623–2646 (2014)
Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22(2), 387–405 (2000)
Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)
Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)
Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/k^{2})\). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983). (in Russian. Translated in Soviet Math. Dokl., 27 (1983), pp. 372–376.)
Ng, M.K., Qi, L., Yang, Y.-F., Huang, Y.-M.: On semismooth Newton-methods for total variation minimization. J. Math. Imaging Vis. 27(3), 265–276 (2007)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)
Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769 (2011)
Queck, W.: The convergence factor of preconditioned algorithms of the Arrow–Hurwicz type. SIAM J. Numer. Anal. 26(4), 1016–1030 (1989)
Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM Math. Model. Numer. Anal. 34(04), 799–810 (2000)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differ. Equ. 135(2), 238–268 (1997)
Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), 165–187 (2003)
Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)
Zhang, J., Chen, K., Yu, B.: An iterative Lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)
Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)
Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA, Los Angeles, CA (2008)
Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer, New York (1989)
Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71(238), 479–505 (2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
WenYi Tian was partially supported by National Natural Science Foundation of China (Nos. 11626250, 11701416). Xiaoming Yuan was partially supported by the General Research Fund from Hong Kong Research Grants Council: HKBU 12300515.
Rights and permissions
About this article
Cite this article
Tian, W., Yuan, X. Convergence Analysis of Primal–Dual Based Methods for Total Variation Minimization with Finite Element Approximation. J Sci Comput 76, 243–274 (2018). https://doi.org/10.1007/s10915-017-0623-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0623-4