Skip to main content
Log in

Image Segmentation Using the Cahn–Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel model for image segmentation by using the Cahn–Hilliard equation. An interesting feature of this model lies in its ability of interpolating missing contours along wide gaps in order to form meaningful object boundaries, which is often achieved by curvature dependent models in the literature. To solve the associated equation, we employ a recently developed technique, that is, the tailored-finite-point method, which helps preserve sharp jumps and thus helps locate segmentation contours more exactly. Numerical experiments are presented to demonstrate the effectiveness of the proposed model and its features. In addition, analytical results on the existence and uniqueness of the associated equation are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bae, E., Tai, X.C., Zhu, W.: Augmented lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imaging 11(1), 1–23 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertozzi, A., Esedo\(\bar{\rm g}\)lu, S., Gillette, A.: Analysis of a two-scale Cahn–Hilliard model for binary image inpainting. Multiscale Model. Simul. 6(3), 913–936 (2007)

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Chen, Y., Tagare, H.D., Thiruvenkadam, S.: Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. Vis. 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  6. Cherfils, L., Fakih, H., Miranville, A.: A complex version of the Cahn–Hilliard equation for grayscale image inpainting. Multiscale Model. Simul. 15(1), 575–605 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, H., Huang, Z., Kellogg, R.B.: A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36(2), 243–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, Z., Li, Y.: Monotone finite point method foe non-equilibrium radiation diffusion equations. BIT Numer. Math. 56(2), 659–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  10. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nitzberg, M., Mumford, D., Shiota, T.: Filtering, segmentation and depth. Lecture Notes in Computer Science. Springer (1993)

  12. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1), 183–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  18. Yang, W., Huang, Z., Zhu, W.: An efficient tailored finite point method for Rician denoising and deblurring. Commun. Comput. Phys. 24(4), 1169–1195 (2018)

    Article  MathSciNet  Google Scholar 

  19. Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57(2), 414–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by National Key Research and Development Program of China 2017YFC0601801 and NSFC Project No. 11871298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Huang, Z. & Zhu, W. Image Segmentation Using the Cahn–Hilliard Equation. J Sci Comput 79, 1057–1077 (2019). https://doi.org/10.1007/s10915-018-00899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00899-7

Keywords

Mathematics Subject Classification

Navigation