Abstract
For multivariate nonlinear Hamiltonian equations, we propose a meshless conservative method by using radial basis approximation. Based on the method of lines, we first discretize the Hamiltonian functional using radial basis function interpolation, and then obtain a finite-dimensional semi-discrete Hamiltonian system. Moreover, we define a discrete symplectic form and verify that it is an approximation to the continuous one and is conserved with respect to time. For time discretization, two conservative methods (symplectic method and energy-conserving method) are employed to derive the full-discretized system. Approximation errors together with conservation properties including symplecticity and energy are discussed in detail. Finally, we present several numerical examples to illustrate that our method is accurate and effective when processing nonlinear Hamiltonian equations with scattered nodes. Besides, the numerical results also confirm the excellent conservation properties of the proposed method.







Similar content being viewed by others
References
Abia, L., Sanz-Serna, J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)
Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160(1), 88–116 (2000)
Bratsos, A.G.: A fourth order numerical scheme for the one dimensional Sine-Gordon equation. Int. J. Comput. Math. 85, 1083–1095 (2008)
Bridges, T.J.: Numerical methods for Hamiltonian PDEs. J. Phys. A 39, 5287–5320 (2006)
Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)
Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)
Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197–223 (2006)
Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comput. 83(288), 1689–1700 (2014)
Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field”method. J. Comput. Phys. 231, 6770–6789 (2012)
Chen, J.B.: Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein–Gordon equation. Lett. Math. Phys. 75, 293–305 (2006)
Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)
Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)
Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)
Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer, Berlin (2010)
Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75, 421–445 (1997)
Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=\left(\frac{\partial u}{\partial x}\right)^{\alpha } \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)
Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)
Kitson, A., McLachlan, R.I., Robidoux, N.: Skew-adjoint finite difference methods on nonuniform grids. N. Z. J. Math. 32, 139–159 (2003)
Lasagni, F.M.: Canonical Runge–Kutta methods. Z. Angew. Math. Phys. 39, 5509–5519 (1988)
Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)
Liu, H.L., Yi, N.Y.: A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation. J. Comput. Phys. 321, 776–796 (2016)
Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)
McLachlan, R.I.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66, 465–492 (1994)
McLachlan, R.I., Robidoux, N.: Antisymmetry, pseudospectral methods, and conservative PDEs. In: International Conference on Differential Equations, vols. 1–2. World Sci. Publ., River Edge, NJ, pp. 994–999 (1999)
McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)
Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditional positive definite functions. Construt. Approx. 2, 11–22 (1986)
Mohammadreza, A.D.: Direct meshless local Petrov–Galerkin method for the two-dimensional Klein–Gordon equation. Eng. Anal. Bound. Elem. 74, 1–13 (2017)
Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493–535 (2004)
Pekmen, B., Tezer-Sezgin, M.: Differential quadrature solution of nonlinear Klein–Gordon and Sine-Gordon equations. Comput. Phys. Commun. 183, 1702–1713 (2012)
Powell, M.J.D.: Radial Basis Functions for Multivariate Interpolation: A Review, in Numerical Analysis, pp. 223–241. Longman Scientific & Technical, New York (1987)
Quispel, G.R.W., McLaren, D.L.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)
Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, No. 7. Chapman & Hall, London (1994)
Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)
Schaback, R., Wu, Z.M.: Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory 91, 320–331 (1997)
Strauss, W.A.: Nonlinear wave equations. AMS Regional Conference Series, no. 73 (1989)
Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)
Wu, Z.M.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8(2), 1–10 (1992)
Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)
Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23, 201–214 (2005)
Wu, Z.M., Zhang, S.L.: Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations. Eng. Anal. Bound. Elem. 37, 1052–1058 (2013)
Wu, Z.M., Zhang, S.L.: A meshless symplectic algorithm for multi-variate Hamiltonian PDEs with radial basis approximation. Eng. Anal. Bound. Elem. 50, 258–264 (2015)
Zhen, L., Bai, Y., Li, Q., Wu, K.: Symplectic and multisymplectic schemes with the simple finite element method. Phys. Lett. A 314, 443–455 (2003)
Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 113(3), 134–139 (1988)
Zhu, H.J., Tang, L.Y., Song, S.H., Tang, Y.F., Wang, D.S.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229(7), 2550–2572 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by NSFC (11631015, 91330201), Joint Research Fund by National Natural Science Foundation of China and Research Grants Council of Hong Kong (11461161006).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sun, Z., Wu, Z. Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs. J Sci Comput 76, 1168–1187 (2018). https://doi.org/10.1007/s10915-018-0658-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0658-1