Abstract
The capability of simulating scattering returns of electromagnetic radiation from bounded obstacles is of overwhelming importance to scientists and engineers. Furthermore, such simulations must be of both surpassing accuracy and high fidelity for many applications of interest. High-Order Spectral methods deliver highly accurate simulations with a relatively small number of degrees of freedom, while interfacial formulations which utilize these discretizations have orders of magnitude smaller execution times and memory requirements. Among these, the High-Order Perturbation of Surfaces algorithms have proved to be a method of choice in layered media applications, and we display here how two of these-the Methods of Field Expansions and Transformed Field Expansions-extend to obstacles of bounded cross-section. In this contribution we provide not only a detailed prescription of the algorithms, but also validate the schemes and point out their benefits and shortcomings. With numerical experiments we show the remarkable efficiency, fidelity, and high-order accuracy one can achieve with implementations of these algorithms.


















Similar content being viewed by others
References
Baker Jr., George A.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)
Bender, Carl M, Orszag, Steven A: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Co, New York (1978). International Series in Pure and Applied Mathematics
Boyd, John P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola (2001)
Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Am. A 10(6), 1168–1175 (1993)
Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities. J. Opt. Soc. Am. A 10(11), 2307–2316 (1993)
Bruno, O., Reitich, F.: Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings. J. Opt. Soc. Am. A 10(12), 2551–2562 (1993)
Bruno, Oscar P., Reitich, Fernando: Boundary-variation solutions for bounded-obstacle scattering problems in three dimensions. J. Acoust. Soc. Am. 104(5), 2579–2583 (1998)
Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151 (1966)
Coifman, R., Goldberg, M., Hrycak, T., Israeli, M., Rokhlin, V.: An improved operator expansion algorithm for direct and inverse scattering computations. Waves Random Media 9(3), 441–457 (1999)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)
Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, volume 9 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)
Enoch, S., Bonod, N.: Plasmonics: From Basics to Advanced Topics. Springer Series in Optical Sciences. Springer, New York (2012)
El-Sayed, I., Huang, X., El-Sayed, M.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-egfr antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006)
Evans, Lawrence C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)
Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
Hu, B., Nicholls, D.P.: Analyticity of Dirichlet–Neumann operators on Hölder and Lipschitz domains. SIAM J. Math. Anal. 37(1), 302–320 (2005)
Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods, volume 54 of Texts in Applied Mathematics. In: Algorithms, analysis, and applications. Springer, New York (2008)
Ihlenburg, Frank: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)
Johnson, Claes: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)
Knupp, P., Salari, K.: Verification of Computer Codes in Computational Science and Engineering. Chapman and Hall/CRC, Boca Raton (2003)
LeVeque, Randall J.: Finite difference methods for ordinary and partial differential equations. In: Steady-state and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)
Liu, M., Guyot-Sionnest, P., Lee, T.-W., Gray, S.: Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys. Rev. B 76, 235428 (2007)
Loo, C., Lowery, A., Halas, N., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5(4), 709–711 (2005)
Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)
Martin, P.A.: Multiple scattering, volume 107 of Encyclopedia of Mathematics and its Applications. In: Interaction of time-harmonic waves with \(N\) obstacles. Cambridge University Press, Cambridge (2006)
Myroshnychenko, V., Carbo-Argibay, E., Pastoriza-Santos, I., Perez-Juste, J., Liz-Marzan, L., Garcia de Abajo, F.: Modeling the optical response of highly faceted metal nanoparticles with a fully 3d boundary element method. Adv. Mater. 20, 4288–4293 (2008)
Milder, D. M.: An improved formalism for rough-surface scattering of acoustic and electromagnetic waves. In: Proceedings of SPIE—The International Society for Optical Engineering (San Diego, 1991), volume 1558, pp. 213–221. International Society for Optical Engineering, Bellingham (1991)
Milder, D. M.: An improved formalism for wave scattering from rough surfaces. J. Acoust. Soc. Am. 89(2), 529–541 (1991)
Milder, D. M.: An improved formalism for electromagnetic scattering from a perfectly conducting rough surface. Radio Sci. 31(6), 1369–1376 (1996)
Milder, D. M.: Role of the admittance operator in rough-surface scattering. J. Acoust. Soc. Am. 100(2), 759–768 (1996)
Myroshnychenko, V., Rodriguez-Fernandez, J., Pastoriza-Santos, I., Funston, A., Novo, C., Mulvaney, P., Liz-Marzan, L., Garcia de Abajo, J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)
Milder, D. M., Sharp, H. Thomas: Efficient computation of rough surface scattering. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991), pp. 314–322. SIAM, Philadelphia (1991)
Milder, D. M., Sharp, H.Thomas: An improved formalism for rough surface scattering. ii: Numerical trials in three dimensions. J. Acoust. Soc. Am. 91(5), 2620–2626 (1992)
Novotny, L., Hecht, B.: Principles of Nano-Optics, 2nd edn. Cambridge University Press, Cambridge (2012)
Nicholls, D.P.: Three-dimensional acoustic scattering by layered media: a novel surface formulation with operator expansions implementation. Proc. R. Soc. Lond. A 468, 731–758 (2012)
Nicholls, D.P.: A method of field expansions for vector electromagnetic scattering by layered periodic crossed gratings. J. Opt. Soc. Am. A 32(5), 701–709 (2015)
Nicholls, D.P.: On analyticity of linear waves scattered by a layered medium. J. Differ. Equ. 263(8), 5042–5089 (2017)
Nicholls, D.P., Nigam, N.: Exact non-reflecting boundary conditions on general domains. J. Comput. Phys. 194(1), 278–303 (2004)
Nicholls, D.P., Oh, S.-H., Johnson, T.W., Reitich, F.: Launching surface plasmon waves via vanishingly small periodic gratings. J. Opt. Soc. Am. A 33(3), 276–285 (2016)
Nicholls, D.P., Reitich, F.: A new approach to analyticity of Dirichlet–Neumann operators. Proc. R. Soc. Edinb. Sect. A 131(6), 1411–1433 (2001)
Nicholls, D.P., Reitich, F.: Stability of high-order perturbative methods for the computation of Dirichlet–Neumann operators. J. Comput. Phys. 170(1), 276–298 (2001)
Nicholls, D.P., Reitich, F.: Analytic continuation of Dirichlet–Neumann operators. Numer. Math. 94(1), 107–146 (2003)
Nicholls, D.P., Reitich, F.: Shape deformations in rough surface scattering: cancellations, conditioning, and convergence. J. Opt. Soc. Am. A 21(4), 590–605 (2004)
Nicholls, D.P., Reitich, F.: Shape deformations in rough surface scattering: improved algorithms. J. Opt. Soc. Am. A 21(4), 606–621 (2004)
Nicholls, D.P., Shen, J.: A stable, high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28(4), 1398–1419 (2006)
Nicholls, D.P., Tammali, V.: A high-order perturbation of surfaces (hops) approach to Fokas integral equations: vector electromagnetic scattering by periodic crossed gratings. Appl. Numer. Methods 101, 1–17 (2016)
Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004)
Petit, R. (ed.): Electromagnetic Theory of Gratings. Springer, Berlin (1980)
Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)
Rayleigh, Lord: On the dynamical theory of gratings. Proc. R. Soc. Lond. A79, 399–416 (1907)
Rice, S.O.: Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 4, 351–378 (1951)
Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)
Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)
Roache, P.J.: Code verification by the method of manufactured solutions. J. Fluids Eng. 124(1), 4–10 (2002)
Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205(1), 131–156 (2005)
Reitich, F., Tamma, K.: State-of-the-art, trends, and directions in computational electromagnetics. CMES Comput. Model. Eng. Sci. 5(4), 287–294 (2004)
Strikwerda, John C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2004)
Xu, H., Bjerneld, E., Käll, M., Börjesson, L.: Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)
Acknowledgements
D.P.N. gratefully acknowledges support from the National Science Foundation through Grant No. DMS-1522548.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nicholls, D.P., Tong, X. High-Order Perturbation of Surfaces Algorithms for the Simulation of Localized Surface Plasmon Resonances in Two Dimensions. J Sci Comput 76, 1370–1395 (2018). https://doi.org/10.1007/s10915-018-0665-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0665-2