Abstract
The diffraction grating problem is modeled by a Helmholtz equation with PML boundary conditions. The PML is truncated by some few-mode Dirichlet to Neumann boundary conditions so that those Fourier modes that cannot be well absorbed by the PML pass through without reflections. Convergence of the truncated PML solution is proved, whose rate is exponential with respect to the PML parameters and uniform with respect to all modes. An a posteriori error estimate is derived for the finite element discretization. The a posteriori error estimate consists of two parts, the finite element discretization error and the PML truncation error which decays exponentially with respect to the PML parameters and uniformly with respect to all modes. Based on the a posteriori error control, a finite element adaptive strategy is established for the diffraction grating problem, such that the PML parameters are determined through the PML truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive algorithm.
Similar content being viewed by others
References
Abboud, T.: Electromagnetic waves in periodic media. In: Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp. 1–9. Newark, DE (1993)
Ammari, H., Bao, G.: Maxwell’s equations in periodic chiral structures. Mathematische Nachrichten 251, 3–18 (2003)
Ammari, H., Nédélec, J.: Low-frequency electromagnetic scattering. SIAM J. Math. Anal. 31, 836–861 (2000)
Babuška, I., Aziz, A.: Survey Lectures on Mathematical Foundations of the Finite Element Method. In: Aziz, A. (ed.) The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, pp. 5–359. Academic Press, New York (1973)
Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)
Bao, G.: Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 32, 1155–1169 (1995)
Bao, G.: Numerical analysis of diffraction by periodic structures: TM polarization. Numerische Mathematik 75, 1–16 (1996)
Bao, G., Cao, Y., Yang, H.: Numerical solution of diffraction problems by a least-square finite element method. Math. Methods Appl. Sci. 23, 1073–1092 (2000)
Bao, G., Chen, Z., Wu, H.: Adaptive finite-element method for diffraction gratings. J. Opt. Soc. Am. A 22, 1106–1114 (2005)
Bao, G., Cowsar, L., Masters, W.: Mathematical Modeling in Optical Science. Frontiers Appl. Math. 22. SIAM, Philadelphia (2001)
Bao, G., Dobson, D.C., Cox, J.A.: Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A 12, 1029–1042 (1995)
Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for the wave scattering by periodic structures. Math. Comp. 79, 1–34 (2010)
Bao, G., Wu, H.: Convergence analysis of the PML problems for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43, 2121–2143 (2005)
Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)
Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numerische Mathematik 97, 219–268 (2004)
Bramble, J.H., Pasciak, J.E.: Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. 76, 597–614 (2007)
Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)
Chandezon, J., Dupuis, M.T., Cornet, G., Maystre, D.: Multicoated gratings: a differential formalism applicable in the entire optical region. J. Opt. Soc. Am. 72, 839–846 (1982)
Chen, Z., Chen, J.: An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77, 673–698 (2008)
Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. (USA) 24, 443–462 (2002)
Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43, 645–671 (2005)
Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)
Chen, Z., Zheng, Z.: Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in layered media. SIAM J. Numer. Anal. 48, 2158–2185 (2010)
Chew, W., Jin, J., Michielssen, E.: Complex coordinate stretching as a generalized absorbing boundary condition. Microw. Opt. Technol. Lett. 15, 363–369 (1997)
Dobson, D.C.: Optimal design of periodic antireflective structures for the Helmholtz equation. Eur. J. Appl. Math. 4, 321–340 (1993)
Dobson, D., Friedman, A.: The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl. 166, 507–528 (1992)
Dörfler, W.: A convergent adaptive algorithm for Possion’s equations. SIAM J. Numer. Anal. 33, 1106–1124 (1996)
Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through subwavelength hole arrays. Nature (London) 391, 667–669 (1998)
Gaylord, T.K., Moharam, M.G.: Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894–937 (1985)
Ji, R.: A posteriori analysis for the finite element method with PML truncated by Neumann boundary condition for diffraction gratings. MA.Sc Thesis, Nanjing University, Nanjing, China (2011)
Lassas, M., Somersalo, E.: On the existence and convergence of the solution of PML equations. Computing 60, 229–241 (1998)
Li, L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13, 1024–1035 (1996)
Li, L.: Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings. J. Opt. Soc. Am. A 16, 2521–2531 (1999)
Lord, N.H., Mulholland, A.J.: A dual weighted residual method applied to complex periodic gratings. Proc. R. Soc. A 469, 20130176 (2013)
Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)
Moharam, M.G., Gaylord, T.K.: Diffraction analysis of dielectric surface-relief gratings. J. Opt. Soc. Am. 72, 1385–1392 (1982)
Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)
Nevire, M., Cerutti-Maori, G., Cadilhac, M.: Sur une nouvelle méthode de résolution du problème de la diffraction d’une onde plane par un réseau infiniment conducteur. Opt. Commun. 3, 48–52 (1971)
Petit, R. (ed.): Electromagnetic Theory of Gratings. Topics in Current Physics 22. Springer, Heidelberg (1980)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)
Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)
Wang, Z., Bao, G., Li, J., Li, P., Wu, H.: An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53, 1585–1607 (2015)
Wang, S.S., Magnusson, R.: Multilayer waveguidegrating filters. Appl. Opt. 34, 2414–2420 (1995)
Zschiedrich, L.: Transparent boundary conditions for Maxwell’s equations: numerical concepts beyond the PML method. Dissertion thesis, vorgelegt am Fachbereich Mathmatik und Informatik der Freien Universitat Berlin, Februar (2009)
Acknowledgements
The authors would like to thank Professor Zhiming Chen for suggesting this topic of research and thank the anonymous referees for their detailed comments and suggestions that improved the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the National Natural Science Foundation of China Grants 11525103, 91630309, and 11621101.
Rights and permissions
About this article
Cite this article
Zhou, W., Wu, H. An Adaptive Finite Element Method for the Diffraction Grating Problem with PML and Few-Mode DtN Truncations. J Sci Comput 76, 1813–1838 (2018). https://doi.org/10.1007/s10915-018-0683-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0683-0
Keywords
- Adaptivity
- Perfectly matched layer
- Few-mode DtN operator
- A posteriori error estimates
- Diffraction gratings