Skip to main content

Advertisement

Log in

A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the Functionalized Cahn–Hilliard equation, including an analysis of convergence. One key difficulty associated with the energy stability is based on the fact that one nonlinear energy functional term in the expansion is neither convex nor concave. To overcome this subtle difficulty, we add two auxiliary terms to make the combined term convex, which in turns yields a convex–concave decomposition of the physical energy. As a result, both the unconditional unique solvability and the unconditional energy stability of the proposed numerical scheme are assured. In addition, a global in time \(H_{\mathrm{per}}^2\) stability of the numerical scheme is established at a theoretical level, which in turn ensures the full order convergence analysis of the scheme, which is the first such result in this field. To deal with an implicit 4-Laplacian term at each time step, we apply an efficient preconditioned steepest descent algorithm to solve the corresponding nonlinear systems in the finite difference set-up. A few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alikakos, N., Bates, P., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikakos, N., Fusco, G.: The spectrum of the Cahn–Hilliard operator for generic interface in higher space dimensions. Indiana Univ. Math. J. 42(2), 637–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening. Acta. Metall. 27, 1085 (1979)

    Article  Google Scholar 

  4. Aristotelous, A., Karakasian, O., Wise, S.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dyn. Sys. B 18, 2211–2238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendejacq, D., Joanicot, M., Ponsinet, V.: Pearling instabilities in water-dispersed copolymer cylinders with charged brushes. Eur. Phys. J. E 17, 83–92 (2005)

    Article  Google Scholar 

  8. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)

    MATH  Google Scholar 

  9. Cahn, J.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

    Article  Google Scholar 

  10. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  11. Chen, F., Shen, J.: Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications. J. Comput. Phys. 231, 5016–5028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Liu, Y., Wang, C., Wise, S.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85, 2231–2257 (2016)

    Article  MATH  Google Scholar 

  14. Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X.: Spectrum for the Allen–Cahn Cahn–Hilliard and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19, 1371–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, X.: Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44(2), 262–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Elliott, C.M., Gardiner, A., Zhao, J.: Convergence of numerical solutions to the Allen–Cahn equation. Appl. Anal. 69(1), 47–56 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193 Part A–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai, S., Promislow, K.: Geometric evolution of bilayers under the Functionalized Cahn–Hilliard equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p 469 (2013)

  21. Diegel, A., Feng, X., Wise, S.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53, 127–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Diegel, A., Wang, C., Wang, X., Wise, S.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Diegel, A., Wang, C., Wise, S.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

    Article  MathSciNet  Google Scholar 

  24. Doelman, A., Hayrapetyan, G., Promislow, K., Wetton, B.: Meander and pearling of single-curvature bilayer interfaces in the Functionalized Cahn–Hilliard equation. SIAM J. Math. Anal. 46, 3640–3677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, L., Feng, W., Wang, C., Wise, S., Zhang, Z.: Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2017.07.012

  26. Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  27. Feng, W., Guo, Z., Lowengrub, J., Wise, S.: A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids. J. Comput. Phys. 352, 463–497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, W., Salgado, A., Wang, C., Wise, S.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, W., Wang, C., Wise, S., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. (Submitted and in review, 2018)

  30. Feng, X., Li, Y.: Analysis of interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35, 1622–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54, 825–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gavish, N., Hayrapetyan, G., Promislow, K., Yang, L.: Curvature driven flow of bi-layer interfaces. Phys. D Nonlinear Phenom. 240, 675–693 (2011)

    Article  MATH  Google Scholar 

  34. Gavish, N., Jones, J., Xu, Z., Christlieb, A., Promislow, K.: Variational models of network formation and ion transport: applications to perfluorosulfonate ionomer membranes. Polymers 4, 630–655 (2012)

    Article  Google Scholar 

  35. Gompper, G., Schick, M.: Correlation between structural and interfacial properties of amphiphilic systems. Phys. Rev. Lett. 65, 1116–1119 (1990)

    Article  Google Scholar 

  36. Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)

    Article  MATH  Google Scholar 

  37. Guo, R., Xu, Y., Xu, Z.: Local discontinuous Galerkin methods for the functionalized Cahn–Hilliard equation. J. Sci. Comput. 63, 913–937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  39. Hsu, W.Y., Gierke, T.D.: Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci. 13, 307–326 (1983)

    Article  Google Scholar 

  40. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jain, S., Bates, F.S.: Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 37, 1511–1523 (2004)

    Article  Google Scholar 

  42. Jones, J.: Development of a fast and accurate time stepping scheme for the Functionalized Cahn–Hilliard equation and application to a graphics processing unit. Ph.D. thesis, Michigan State University (2013)

  43. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. (in press, 2018)

  44. Promislow, K., Wetton, B.: Pem fuel cells: a mathematical overview. SIAM J. Appl. Math. 70, 369–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Promislow, K., Wu, Q.: Existence of pearled patterns in the planar functionalized Cahn–Hilliard equation. J. Differ. Equ. 259, 3298–3343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems. In: Proceedings of the Royal Society of London A, The Royal Society, pp. rspa–2008 (2009)

  48. Torabi, S., Wise, S., Lowengrub, J., Ratz, A., Voigt, A.: A new method for simulating strongly anisotropic Cahn–Hilliard equations. In: MST 2007 Conference Proceedings, vol. 3, p. 1432 (2007)

  49. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. A 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yan, Y., Chen, W., Wang, C., Wise, S.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    Google Scholar 

Download references

Acknowledgements

JSL acknowledges partial support from NSF-CHE 1035218, NSF-DMR 1105409, NSF-DMS 1217273 and DMS-FRG 1507033. CW acknowledges partial support from NSF-DMS 1418689. SMW acknowledges partial support from NSF-DMS1418692 and NSF-DMS 1719854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Guan, Z., Lowengrub, J. et al. A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis. J Sci Comput 76, 1938–1967 (2018). https://doi.org/10.1007/s10915-018-0690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0690-1

Keywords

Mathematics Subject Classification

Navigation