Skip to main content

Advertisement

Log in

A Numerically Efficient Dissipation-Preserving Implicit Method for a Nonlinear Multidimensional Fractional Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work is motivated by the investigation of a fractional extension of a general nonlinear multidimensional wave equation with damping. The model under study considers partial derivatives of orders in \((0, 1) \cup (1, 2]\) with respect to the spatial variables. The undamped one-dimensional version of the model was previously used in the literature to investigate the presence of the nonlinear phenomenon of supratransmission in fractional relativistic wave equations. In agreement with the continuous counterpart, the capability of the method to preserve the total energy of the system was demonstrated then. In the present work, we show that the modified methodology is capable of preserving the dissipation of energy of the extended continuous model. We note that the discrete energy functional is positive, a fact which is in agreement with the positivity of the continuous energy. Moreover, the unique solubility of the method is established, and we show that our technique is second-order consistent, stable and quadratically convergent. Some bounds for the numerical solution are computed in the way, and various simulations are performed in order to assess the capability of the method to preserve or dissipate the energy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfimov, G., Pierantozzi, T., Vázquez, L.: Numerical study of a fractional sine-Gordon equation. In: Le Mehuate, A., Tenreiro Machado, J.A., Trigeassou, L.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, vol. 4, pp. 153–162. Proceedings of the IFAC-FDA Workshop, Bordeaux (July 2004)

  3. Ben-Yu, G., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18(1), 1–14 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Benetti, F.P., Ribeiro-Teixeira, A.C., Pakter, R., Levin, Y.: Nonequilibrium stationary states of 3D self-gravitating systems. Phys. Rev. Lett. 113(10), 100,602 (2014)

    Article  Google Scholar 

  5. Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68(2), 464–483 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3), 57–159 (2009)

    Article  MathSciNet  Google Scholar 

  8. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9), 1242–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, J., Li, Z., Lu, L.: An optimized low-dissipation monotonicity-preserving scheme for numerical simulations of high-speed turbulent flows. J. Sci. Comput. 56(1), 67–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fei, Z., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45(1), 17–30 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Frederico, G.S., Torres, D.F.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, A.: Foundations of Modern Analysis. Courier Corporation, New York (1970)

    MATH  Google Scholar 

  13. Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1), 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, New York (2010)

    Book  MATH  Google Scholar 

  15. Iqbal, R.: An algorithm for convexity-preserving surface interpolation. J. Sci. Comput. 9(2), 197–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ivancevic, V.G., Ivancevic, T.T., et al.: Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures. J. Geom. Symmetry Phys. 31, 1–56 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Korabel, N., Zaslavsky, G.M., Tarasov, V.E.: Coupled oscillators with power-law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1405–1417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056,108 (2002)

    Article  MathSciNet  Google Scholar 

  19. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Meerschaert, M., McGough, R., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 315(1), 40–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Macías-Díaz, J.E., Hendy, A.S., de Staelen, R.H.: A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. (2017) (submitted for publication)

  23. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mickens, R.E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11(7), 645–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miele, A., Dekker, J.: Long-range chromosomal interactions and gene regulation. Mol. BioSyst. 4(11), 1046–1057 (2008)

    Article  Google Scholar 

  26. Pen-Yu, K.: Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)

    MathSciNet  Google Scholar 

  27. Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73(6), 850–872 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stan, D., Vázquez, J.L.: The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J. Math. Anal. 46(5), 3241–3276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 38(26), 5929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tarasov, V.E.: Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. Gen. 39(48), 14,895 (2006)

    Article  MathSciNet  Google Scholar 

  32. Tarasov, V.E., Zaslavsky, G.M.: Conservation laws and Hamiltons equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860–1878 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66(2), 725–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X., Liu, F., Chen, X.: Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. 2015, 590,435 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Xiong, T., Qiu, J.M., Xu, Z.: Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. J. Sci. Comput. 67(3), 1066–1088 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term. Int. J. Differ. Equ. 2010, 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62(3), 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank A. J. Serna-Reyes, a graduate student in the master’s program in applied mathematics at the Universidad Autónoma de Aguascalientes, for pointing out some typos in a preliminary version of this paper and for improving the computer code used to produce the simulations shown in this work. The author also wishes to thank the anonymous reviewers and the editor in charge of handling this paper for all their criticisms and comments. All of their suggestions contributed significantly to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Macías-Díaz.

Model Derivation

Model Derivation

The purpose of this appendix is to outline the derivation of the fractional partial differential equation (1.5) from the discrete equations of motion (1.1). To that end, we will follow closely the discussion in [31].

Let us consider a system of interacting particles with dynamics governed by the Eq. (1.1). The distance between consecutive particles is equal to \(h > 0\), and each of the functions \(I_n\) is given by (1.2). Moreover, let us assume that

  1. (a)

    \(J (n , m) = J (n - m) = J (m - n)\) for all \(m , n \in \mathbb {Z}\),

  2. (b)

    \(\displaystyle {\sum _{n = 1}^\infty | J (n) |^2 < \infty }\).

It is easy to see that these conditions imply that \(J (- n) = J (n)\) for each \(n \in \mathbb {Z}\).

Definition 2

Suppose that conditions (a) and (b) above are satisfied, and let \(\alpha > 0\). Then J is called an \(\alpha \)-interaction if the function

$$\begin{aligned} J_\alpha (k) = \sum _{\begin{array}{c} n = - \infty \\ n \ne 0 \end{array}}^\infty e^{- i k n} J (n) = 2 \sum _{n = 1}^\infty J (n) \cos (k n), \quad \forall k \in {\mathbb {R}}, \end{aligned}$$
(A.1)

satisfies

$$\begin{aligned} A_\alpha = \lim _{k \rightarrow 0} \frac{J_\alpha (k) - J_\alpha (0)}{|k|^\alpha } \in {\mathbb {R}} \setminus \{ 0 \}. \end{aligned}$$
(A.2)

Example 4

The following functions defined on \(\mathbb {Z}\) are examples of \(\alpha \)-interactions (see [31]). For convenience, these functions may be defined as 0 for \(n = 0\).

  1. 1.

    \(J_1 (n) = (- 1)^n n^{- 2}\).

  2. 2.

    \(J_2 (n) = | n |^{- (\beta + 1)}\), where \(\beta \in {\mathbb {R}}^+ \setminus {\mathbb {N}}\).

  3. 3.

    \(\displaystyle {J_3 (n) = \frac{(- 1)^n}{\varGamma (1 + \frac{\alpha }{2} + n) \varGamma (1 + \frac{\alpha }{2} - n)}}\), where \(\alpha \in (0 , 1) \cup (1 , 2]\).

  4. 4.

    \(\displaystyle {J_4 (n) = \frac{(- 1)^n}{a^2 - n^2}}\), where \(a^2 \notin \mathbb {Z}\).

  5. 5.

    \(\displaystyle {J_5 (n) = \frac{1}{|n| !}}\). \(\square \)

In the following, we will let \({\mathscr {F}}_h : u_n (t) \rightarrow \hat{u} (k , t)\) denote the Fourier series transform, let \({\mathscr {L}} : \hat{u} (k , t) \rightarrow \tilde{u} (k , t)\) be the passage to the limit when the distance between consecutive oscillators tend to zero, and let \({\mathscr {F}}^{- 1} : \tilde{u} (k , t) \rightarrow u (x , t)\) be the inverse Fourier transform. Finally, let \(\circ \) represent the operation of composition of functions and \({\mathscr {T}} = {\mathscr {F}}^{- 1} \circ {\mathscr {L}} \circ {\mathscr {F}}_h\). Using these conventions, the next theorem establishes conditions under which (1.5) can be obtained from systems of oscillators with long-range interactions.

Theorem 8

(Tarasov [31]) Let \(\alpha > 0\) and let J be an \(\alpha \)-interaction. Then \({\mathscr {T}}\) transforms the discrete equations of motion (1.1) into the fractional continuous equation (1.5), where the fractional derivative in space is the Riesz fractional derivative of order \(\alpha \).

Proof

The theorem is a direct consequence of Proposition 1 [31]. Just let the constant g of that work be equal to 1.\(\square \)

Example 5

Consider the \(\alpha \)-interactions described in Example 4. We provide next the result of applying the transformation \({\mathscr {T}}\) to each of them (see [31]).

  1. 1.

    \(\displaystyle {{\mathscr {T}} (J_1) = - \frac{1}{2} \frac{\partial ^2}{\partial x^2}}\).

  2. 2.

    \(\displaystyle {{\mathscr {T}} (J_2) = - i \pi \frac{\partial }{\partial x}}\), where \(\beta \in {\mathbb {R}}^+ \setminus {\mathbb {N}}\).

  3. 3.

    \(\displaystyle {{\mathscr {T}} (J_3) = - 2 \varGamma (- \alpha ) \cos (\pi \alpha / 2) \frac{\partial ^\alpha }{\partial |x|^\alpha }}\), where \(\alpha \in (0 , 1) \cup (1 , 2]\).

  4. 4.

    \(\displaystyle {{\mathscr {T}} (J_4) = - \frac{a \pi }{2 \sin (\pi a)} \frac{\partial ^2}{\partial x^2}}\), where \(a \in {\mathbb {R}}^+\) satisfies \(a^2 \notin \mathbb {Z}\).

  5. 5.

    \(\displaystyle {{\mathscr {T}} (J_5) = 4 i e \frac{\partial }{\partial x}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Díaz, J.E. A Numerically Efficient Dissipation-Preserving Implicit Method for a Nonlinear Multidimensional Fractional Wave Equation. J Sci Comput 77, 1–26 (2018). https://doi.org/10.1007/s10915-018-0692-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0692-z

Keywords

Mathematics Subject Classification

Navigation