Skip to main content

Advertisement

Log in

A Second Order Energy Stable Linear Scheme for a Thin Film Model Without Slope Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present a second order accurate, energy stable numerical scheme for the epitaxial thin film model without slope selection, with a mixed finite element approximation in space. In particular, an explicit treatment of the nonlinear term, \(\frac{\nabla u}{1+|\nabla u|^2}\), greatly simplifies the computational effort; only one linear equation with constant coefficients needs to be solved at each time step. Meanwhile, a second order Douglas–Dupont regularization term, \(A\tau \varDelta ^2 ( u^{n+1} - u^n)\), is added in the numerical scheme, so that an unconditional long time energy stability is assured. In turn, we perform an \(\ell ^\infty (0,T; L^2)\) convergence analysis for the proposed scheme, with an \(O (\tau ^2 + h^q)\) error estimate derived. In addition, an optimal convergence analysis is provided for the nonlinear term using \(Q_q\) finite elements, which shows that the spatial convergence order can be improved to \(q+1\) on regular rectangular mesh. A few numerical experiments are presented, which confirms the efficiency and accuracy of the proposed second order numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Singapore (2003)

    MATH  Google Scholar 

  2. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2007)

    Google Scholar 

  3. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51, 2563–2584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Wang, Y.: A mixed finite element method for thin film epitaxy. Numer. Math. 122, 771–793 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS. Symp. Proc. 529, 39 (1998)

    Article  MathSciNet  Google Scholar 

  8. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. (2017, in review)

  9. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (2012)

    MATH  Google Scholar 

  10. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78, 90–93 (1997)

    Article  Google Scholar 

  11. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. (2017). https://doi.org/10.1090/mcom/3262

  12. Kohn, R.: Energy-driven pattern formation. In: Sanz-Sole, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–384. European Mathematical Society Publishing House, Madrid (2007)

    Google Scholar 

  13. Kohn, R., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B.: High-order surface relaxation versus the Ehrlich–Schwoebel effect. Nonlinearity 19, 25812603 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Li, B., Liu, J.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, B., Liu, J.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54, 1653–1681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J.: Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J. Math. Anal. Appl. 230, 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Qiao, Z., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qiao, Z., Sun, Z., Zhang, Z.: The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differ. Equ. 28, 1893–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qiao, Z., Sun, Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84, 653–674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qiao, Z., Wang, C., Wise, S., Zhang, Z.: Error analysis of a finite difference scheme for the epitaxial thin film growth model with slope selection with an improved convergence constant. Int. J. Numer. Anal. Model. 14, 283–305 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J.: Long time stability and convergence for fully discrete nonlinear galerkin methods. Appl. Anal. 38, 201–229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, New York (2008)

    Google Scholar 

  29. Yan, Y., Chen, W., Wang, C., Wise, S.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)

    Google Scholar 

  30. Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. (2017, accepted)

  31. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Grants NSFC 11671098, 11331004, 91630309, a 111 Project B08018 (W. Chen), NSF DMS-1418689 (C. Wang), and Grant 2017110715 by Shanghai University of Finance and Economics (Y. Yan). C. Wang also thanks Shanghai Center for Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, for support during his visit. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions, which lead to substantial improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, W., Wang, C. et al. A Second Order Energy Stable Linear Scheme for a Thin Film Model Without Slope Selection. J Sci Comput 76, 1905–1937 (2018). https://doi.org/10.1007/s10915-018-0693-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0693-y

Keywords

Navigation