Skip to main content
Log in

An Adaptive Staggered Discontinuous Galerkin Method for the Steady State Convection–Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Staggered grid techniques have been applied successfully to many problems. A distinctive advantage is that physical laws arising from the corresponding partial differential equations are automatically preserved. Recently, a staggered discontinuous Galerkin (SDG) method was developed for the convection–diffusion equation. In this paper, we are interested in solving the steady state convection–diffusion equation with a small diffusion coefficient \(\epsilon \). It is known that the exact solution may have large gradient in some regions and thus a very fine mesh is needed. For convection dominated problems, that is, when \(\epsilon \) is small, exact solutions may contain sharp layers. In these cases, adaptive mesh refinement is crucial in order to reduce the computational cost. In this paper, a new SDG method is proposed and the proof of its stability is provided. In order to construct an adaptive mesh refinement strategy for this new SDG method, we derive an a-posteriori error estimator and prove its efficiency and reliability under a boundedness assumption on \(h/\epsilon \), where h is the mesh size. Moreover, we will present some numerical results with singularities and sharp layers to show the good performance of the proposed error estimator as well as the adaptive mesh refinement strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, N., Matthies, G.: Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent linear convection–diffusion-reaction equations. J. Sci. Comput. 67, 998–1018 (2015)

    MathSciNet  Google Scholar 

  2. Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)

    Article  MathSciNet  Google Scholar 

  4. Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27, 116–147 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  6. Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005)

    Article  MathSciNet  Google Scholar 

  7. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cheung, S.W., Chung, E., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 302, 251–266 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)

    Article  MathSciNet  Google Scholar 

  13. Chung, E.T., Ciarlet Jr., P., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)

    Article  MathSciNet  Google Scholar 

  15. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. Part II: the Stokes flow. J. Sci. Comput. 66, 870–887 (2016)

    Article  MathSciNet  Google Scholar 

  16. Chung, E.T., Du, J., Yuen, M.C.: An adaptive SDG method for the Stokes system. J. Sci. Comput. 70, 766–792 (2017)

    Article  MathSciNet  Google Scholar 

  17. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006)

    Article  MathSciNet  Google Scholar 

  18. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  Google Scholar 

  19. Chung, E.T., Kim, H.H., Widlund, O.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51, 47–67 (2013)

    Article  MathSciNet  Google Scholar 

  20. Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the convection–diffusion equation. J. Numer. Math. 20, 1–31 (2012)

    Article  MathSciNet  Google Scholar 

  21. Chung, E.T., Leung, W.T.: A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection–diffusion problems. Commun. Comput. Phys. 14, 370–392 (2013)

    Article  MathSciNet  Google Scholar 

  22. Chung, E., Yuen, M.C., Zhong, L.: A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations. Appl. Math. Comput. 237, 613–631 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Dong, B., Guzman, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection–diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)

    Article  MathSciNet  Google Scholar 

  24. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  25. Codina, R.: Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. Lecture Notes in Computational Science and Engineering, vol. 81, pp. 85–97 (2011)

  26. Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  27. Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Applied mathematical sciences. Springer, New York (2004)

    Book  Google Scholar 

  28. Ern, A., Stephansen, A.F., Vohralik, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion reaction problems. J. Comput. Appl. Math. 234, 114–130 (2010)

    Article  MathSciNet  Google Scholar 

  29. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49, 225–256 (2015)

    Article  MathSciNet  Google Scholar 

  30. Houston, P., Perugia, I., Schotzau, D.: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)

    Article  MathSciNet  Google Scholar 

  31. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  32. Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)

    Article  MathSciNet  Google Scholar 

  33. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  Google Scholar 

  35. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  Google Scholar 

  36. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228, 3232–3254 (2009)

    Article  MathSciNet  Google Scholar 

  37. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66, 346–357 (2016)

    Article  MathSciNet  Google Scholar 

  38. Rostand, V., Le Roux, D.Y.: Raviart–Thomas and Brezzi–Douglas–Marini finite-element approximations of the shallow-water equations. Int. J. Numer. Methods Fluids 57, 951–976 (2008)

    Article  MathSciNet  Google Scholar 

  39. Süli, E., Schwab, C., Houston, P.: hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Cockburn, B., Karniadakis, G. E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. . Springer, Berlin, pp. 221–230 (2000)

    Google Scholar 

  40. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  Google Scholar 

  41. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MathSciNet  Google Scholar 

  42. Vohralik, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of converction–diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Eric Chung is partially supported by Hong Kong RGC General Research Fund (Projects: 14317516, 14301314) and CUHK Direct Grant for Research 2016-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Chung, E. An Adaptive Staggered Discontinuous Galerkin Method for the Steady State Convection–Diffusion Equation. J Sci Comput 77, 1490–1518 (2018). https://doi.org/10.1007/s10915-018-0695-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0695-9

Keywords