Abstract
Using the primal formulation of the Local Discontinuous Galerkin (LDG) method, discrete analogues of the energy and the Hamiltonian of a general class of fractional nonlinear Schrödinger equation are shown to be conserved for two stabilized version of the method. Accuracy of these invariants is numerically studied with respect to the stabilization parameter and two different projection operators applied to the initial conditions. The fully discrete problem is analyzed for two implicit time step schemes: the midpoint and the modified Crank–Nicolson; and the explicit circularly exact Leapfrog scheme. Stability conditions for the Leapfrog scheme and a stabilized version of the LDG method applied to the fractional linear Schrödinger equation are derived using a von Neumann stability analysis. A series of numerical experiments with different nonlinear potentials are presented.














Similar content being viewed by others
References
Aboelenen, T.: A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428–452 (2018)
Ardila, A.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. 155, 52–64 (2017)
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)
Bhrawy, A.H., Zaky, M.A.: Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Computers & Mathematics with Applications 73(6), 1100–1117 (2017). (Advances in Fractional Differential Equations (IV): Time-fractional PDEs)
Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional spacetime variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)
Castillo, P.: An optimal error estimate for the local discontinuous Galerkin method. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Volume 11 of Lecture Notes in Computational Science and Engineering, pp. 285–290. Springer, Berlin (2000)
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)
Castillo, P., Cockburn, B., Schötzau, D., Schwab, Ch.: An optimal a priori error estimate for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2001)
Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)
Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)
D’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38(18), 5207–5216 (2015)
Delfour, M., Fortin, M., Payré, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)
Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)
Deng, W.H., Hesthaven, J.S.: Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47(6), 1845–1864 (2013)
Griffiths, D.F., Mitchell, A.R., Morris, JLi: A numerical study of the nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 45(1), 177–215 (1984)
Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)
Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082104 (2006)
Herbst, B.M., Morris, JLi, Mitchell, A.R.: Numerical experience with the nonlinear Schrödinger equation. J. Comput. Phys. 60, 282–305 (1985)
Klein, C., Sparber, C., Markowich, P.: Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. A 470, 20140364 (2014)
Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)
Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional equations. J. Comput. Phys. 358(1), 256–282 (2018)
Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74(2), 499–525 (2017)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, Cambridge (1998)
Ran, M., Zhang, C.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)
Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43(167), 21–27 (1984)
Sanz-Serna, J.M., Manoranjan, V.S.: A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52(2), 273–289 (1983)
Sanz-Serna, J.M., Verwer, J.G.: Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6, 25–42 (1986)
Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)
Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)
Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation, Volume 139 of Applied Mathematical Sciences. Springer, Berlin (1999)
Verwer, J.G., Dekker, K.: Step by step stability in the numerical solution of partial differential equations. Technical Report 161-83, Centre for Mathematics and Computer Science, Amsterdam (1983)
Wang, D., Xiao, A., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242(1), 670–681 (2013)
Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)
Wang, P., Huang, C.: Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 71(5), 1114–1128 (2016)
Wei, L., Zhang, X., Kumar, S., Yildirim, A.: A numerical study based on an implicit fully discrete local discontinuous galerkin method for the time-fractional coupled Schrödinger system. Comput. Math. Appl. 64(8), 2603–2615 (2012)
Weideman, J.A.C., Herbst, B.M.: Split-step alternating direction implicit difference scheme for the fractional schrödinger equation in two dimensions. SIAM J. Numer. Anal. 23(3), 485–507 (1986)
Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)
Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)
Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)
Zhang, H., Hu, Q.: Existence of the global solution for fractional logarithmic Schrödinger equation. Comput. Math. Appl. 75(1), 161–169 (2018)
Acknowledgements
We kindly thank the anonymous reviewers for their valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Prof. Bernardo Cockburn and Prof. Chi-Wang Shu.
Rights and permissions
About this article
Cite this article
Castillo, P., Gómez, S. On the Conservation of Fractional Nonlinear Schrödinger Equation’s Invariants by the Local Discontinuous Galerkin Method. J Sci Comput 77, 1444–1467 (2018). https://doi.org/10.1007/s10915-018-0708-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0708-8
Keywords
- Fractional nonlinear Schrödinger equation (FNLS)
- Local discontinuous Galerkin (LDG)
- Energy and Hamiltonian conservation
- CFL