Skip to main content
Log in

High Spatial Order Energy Stable FDTD Methods for Maxwell’s Equations in Nonlinear Optical Media in One Dimension

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time-dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Anne, L., Joly, P., Tran, Q.H.: Construction and analysis of higher order finite difference schemes for the 1D wave equation. Comput. Geosci. 4, 207–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aregba-Driollet, D.: Godunov scheme for Maxwell’s equations with Kerr nonlinearity. Commun. Math. Sci. 13, 2195–2222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bokil, V., Gibson, N.: Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 32, 926–956 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bokil, V.A., Cheng, Y., Jiang, Y., Li, F.: Energy stable discontinuous Galerkin methods for Maxwell’s equations in nonlinear optical media. J. Comput. Phys 350, 420–452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bokil, V.A., Gibson, N.G.: High-order staggered finite difference methods for Maxwell’s equations in dispersive media. Technical Report ORST-MATH-10-01, Oregon State University. http://hdl.handle.net/1957/13786, January (2010)

  7. Bourgeade, A., Nkonga, B.: Numerical modeling of laser pulse behavior in nonlinear crystal and application to the second harmonic generation. Multiscale Model. Simul. 4, 1059–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001)

    Google Scholar 

  9. de La Bourdonnaye, A.: High-order scheme for a nonlinear Maxwell system modelling Kerr effect. J. Comput. Phys. 160, 500–521 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, A., White, D., Rodrigue, G.: An efficient vector finite element method for nonlinear electromagnetic modeling. J. Comput. Phys. 225, 1331–1346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B.: On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12(4), 509–528 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fornberg, B., Ghrist, M.: Spatial finite difference approximations for wave-type equations. SIAM J. Numer. Anal. 37, 105–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujii, M., Tahara, M., Sakagami, I., Freude, W., Russer, P.: High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media. IEEE J. Quantum Electron. 40, 175–182 (2004)

    Article  Google Scholar 

  14. Gedney, S.D., Young, J.C., Kramer, T.C., Roden, J.A.: A discontinuous Galerkin finite element time-domain method modeling of dispersive media. IEEE Trans. Antennas Propag. 60, 1969–1977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghrist, M.: Finite Difference Methods for Wave Equations. Ph.D. Thesis, University of Colorado, Boulder, CO (2000)

  16. Gilles, L., Hagness, S., Vázquez, L.: Comparison between staggered and unstaggered finite-difference time-domain grids for few-cycle temporal optical soliton propagation. J. Comput. Phys. 161, 379–400 (2000)

    Article  MATH  Google Scholar 

  17. Goorjian, P.M., Taflove, A., Joseph, R.M., Hagness, S.C.: Computational modeling of femtosecond optical solitons from Maxwell’s equations. IEEE J. Quantum Electron. 28, 2416–2422 (1992)

    Article  Google Scholar 

  18. Greene, J.H., Taflove, A.: General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14, 8305–8310 (2006)

    Article  Google Scholar 

  19. Hile, C.V., Kath, W.L.: Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation. JOSA B 13, 1135–1145 (1996)

    Article  Google Scholar 

  20. Huang, Y., Li, J., Yang, W.: Interior penalty DG methods for Maxwell’s equations in dispersive media. J. Comput. Phys. 230, 4559–4570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, X., Cai, W., Zhang, P.: High-order DGTD methods for dispersive Maxwell’s equations and modelling of silver nanowire coupling. Int. J. Numer. Methods Eng. 69, 308–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, X., Cai, W., Zhang, P.: Reflection/transmission characteristics of a discontinuous Galerkin method for Maxwell’s equations in dispersive inhomogeneous media. J. Comput. Lathematics Int. Edn. 26, 347 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Joseph, R.M., Hagness, S.C., Taflove, A.: Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt. Lett. 16, 1412–1414 (1991)

    Article  Google Scholar 

  24. Joseph, R.M., Taflove, A.: Spatial soliton deflection mechanism indicated by FD–TD Maxwell’s equations modeling. IEEE Photon. Technol. Lett. 6, 1251–1254 (1994)

    Article  Google Scholar 

  25. Joseph, R.M., Taflove, A.: FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997)

    Article  Google Scholar 

  26. Joseph, R.M., Taflove, A., Goorjian, P.M.: Direct time integration of Maxwell’s equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 18, 491–493 (1993)

    Article  Google Scholar 

  27. Kashiwa, T., Fukai, I.: A treatment by the FD–TD method of the dispersive characteristics associated with electronic polarization. Microwave Opt. Technol. Lett. 3, 203–205 (1990)

    Article  Google Scholar 

  28. Kashiwa, T., Yoshida, N., Fukai, I.: A treatment by the finite-difference time domain method of the dispersive characteristics associated with orientational polarization. IEEE Trans. IEICE 73, 1326–1328 (1990)

    Google Scholar 

  29. Kelley, D.F., Luebbers, R.J.: Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 44, 792–797 (1996)

    Article  Google Scholar 

  30. Kinsler, P., Radnor, S., Tyrrell, J., New, G.: Optical carrier wave shocking: detection and dispersion. Phys. Rev. E 75, 066603 (2007)

    Article  Google Scholar 

  31. Lanteri, S., Scheid, C.: Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 33, 432–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, J.: Error analysis of finite element methods for 3-D Maxwell’s equations in dispersive media. J. Comput. Appl. Math. 188, 107–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J.: Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 196, 3081–3094 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, J., Chen, Y.: Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 195, 4220–4229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, J., Huang, Y.: Time-domain finite element methods for Maxwell’s equations in metamaterials, vol. 43. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  36. Li, J., Shields, S.: Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes. Numer. Math. 134, 741–781 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luebbers, R., Hunsberger, F.P., Kunz, K.S., Standler, R.B., Schneider, M.: A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Trans. Electromagn. Compat. 32, 222–227 (1990)

    Article  Google Scholar 

  38. Luebbers, R.J., Hunsberger, F.: FDTD for Nth-order dispersive media. IEEE Trans. Antennas Propag. 40, 1297–1301 (1992)

    Article  Google Scholar 

  39. Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Petropoulos, P.: Fourth-order accurate staggered finite difference schemes for the time-dependent Maxwell equations, in Ordinary and partial differential equations, Vol. V (Dundee, : vol. 370 of Pitman Res. Notes Math. Ser. Longman, Harlow 1997, pp. 85–107 (1996)

  41. Prokopidis, K.P., Kosmidou, E.P., Tsiboukis, T.D.: An FDTD algorithm for wave propagation in dispersive media using higher-order schemes. J. Electromagn. Waves Appl. 18, 1171–1194 (2004)

    Article  Google Scholar 

  42. Ramadan, O.: Systematic wave-equation finite difference time domain formulations for modeling electromagnetic wave-propagation in general linear and nonlinear dispersive materials. Int. J. Mod. Phys. C 26, 1550046 (2015)

    Article  MathSciNet  Google Scholar 

  43. Sørensen, M.P., Webb, G.M., Brio, M., Moloney, J.V.: Kink shape solutions of the Maxwell–Lorentz system. Phys. Rev. E 71, 036602 (2005)

    Article  MathSciNet  Google Scholar 

  44. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain method, 3rd edn. Artech House, Norwood (2005)

    MATH  Google Scholar 

  45. Taflove, A., Oskooi, A., Johnson, S.G.: Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House, Norwood (2013)

    Google Scholar 

  46. Tyrrell, J., Kinsler, P., New, G.: Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion. J. Mod. Opt. 52, 973–986 (2005)

    Article  MATH  Google Scholar 

  47. Wang, B., Xie, Z., Zhang, Z.: Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media. J. Comput. Phys. 229, 8552–8563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xie, Z., Chan, C., Zhang, B.: An explicit fourth-order staggered finite-difference time domain method for Maxwell’s equations. J. Comput. Appl. Math. 147, 75–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yee, K.: Numerical solution of initail boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  50. Yefet, A., Petropoulos, P.G.: A fourth-order FD-TD scheme for electromagnetics, in Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, pp. 883–887 (2000)

  51. Yefet, A., Petropoulos, P.G.: A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 168, 286–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Young, J., Gaitonde, D., Shang, J.: Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach. IEEE Trans. Antennas Propag. 45, 1573–1580 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Young, J.L., Nelson, R.O.: A summary and systematic analysis of FDTD algorithms for linearly dispersive media. IEEE Antennas Propag. Mag. 43, 61–77 (2001)

    Article  Google Scholar 

  54. Young, L.: A higher order FDTD method for EM propagation in a collisionless cold plasma. IEEE Trans. Antennas Propag. 44, 1283–1289 (1992)

    Article  Google Scholar 

  55. Zhu, B., Chen, J., Zhong, W., Liu, Q.: A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell’s equations. Int. J. Numer. Modell. Electron. Netw. Dev. Fields 25(5–6), 607–620 (2012)

    Article  Google Scholar 

  56. Ziolkowski, R.W., Judkins, J.B.: Nonlinear finite-difference time-domain modeling of linear and nonlinear corrugated waveguides. JOSA B 11, 1565–1575 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ICERM’s Collaborate@ICERM program as well as the Research in Pairs program at MFO, Oberwolfach in Germany for their support of co-authors Bokil, Cheng and Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puttha Sakkaplangkul.

Additional information

Research is supported by NSF Grant DMS-1720116. Research is supported by NSF Grants DMS-1453661 and DMS-1720023. Research is supported by NSF Grant DMS-1719942.

Appendices

Appendix A. 2M Order Spatial Discretizations

In this section, we provide a proof for Theorem 4.1 by following the exposition in [2, 6].

Proof

Following the discussion in Sect. 4, assume that \(u,v \in C_{\#}^{2m+3}([0,L])\) with \(m\in {\mathbb {N}}\) an integer, and \(m \ge 1\), where the subscript \(_\#\) is used to indicate periodic boundary conditions. Then, if \(v_h \in V_{0,h}\) is a restriction of v to the primal grid and \(u_h \in V_{\frac{1}{2},h}\) is a restriction of u to the dual grid, we have the following Taylor expansions [8, p.53]

$$\begin{aligned}&\left( \tilde{{\mathcal {D}}}^{(2)}_{h}u_h\right) _\ell = \frac{\partial u}{\partial x}(x_\ell ) +\sum _{i=1}^m \displaystyle \frac{h^{2i}}{(2i+1)!2^{2i}}\displaystyle \left( \frac{\partial ^{2i+1}u}{\partial x^{2i+1}}\right) (x_\ell ) + {\mathcal {O}}\left( h^{2m+2}\right) , \end{aligned}$$
(A.1)
$$\begin{aligned}&\left( {\mathcal {D}}^{(2)}_{h}v_h\right) _{\ell +\frac{1}{2}} = \frac{\partial v}{\partial x}(x_{\ell +\frac{1}{2}}) +\sum _{i=1}^m \displaystyle \frac{h^{2i}}{(2i+1)!2^{2i}}\displaystyle \left( \frac{\partial ^{2i+1}v}{\partial x^{2i+1}}\right) (x_{\ell +\frac{1}{2}}) + {\mathcal {O}}\left( h^{2m+2}\right) . \end{aligned}$$
(A.2)

By replacing h / 2 by \((2p-1)h/2\) in (A.1) and by inserting the different Taylor expansions obtained from (A.1) into (4.8) with \(m = M-1\) we obtain ( [8, p. 53])

$$\begin{aligned} \left( {\tilde{{\mathcal {D}}}^{(2M)}_{h}u_h} \right) _{\ell }= & {} \sum _{p=1}^M \lambda _{2p-1}^{2M} \sum _{i=0}^{M-1}\left[ \displaystyle \left( \frac{(2p-1)h}{2}\right) ^{2i}\displaystyle \frac{1}{(2i+1)!} \displaystyle \left( \frac{\partial ^{2i+1}u}{\partial x^{2i+1}}\right) (x_{\ell })+ {\mathcal {O}}(h^{2M})\right] \nonumber \\= & {} \sum _{i=0}^{M-1}\left[ \displaystyle \frac{h^{2i}}{2^{2i}(2i+1)!} \left( \displaystyle \frac{\partial ^{2i+1}u}{\partial x^{2i+1}}\right) (x_\ell ) \sum _{p=1}^M \lambda _{2p-1}^{2M}(2p-1)^{2i}\right] + {\mathcal {O}}(h^{2M}).\nonumber \\ \end{aligned}$$
(A.3)

Requiring \(\left( { \tilde{{\mathcal {D}}}^{(2M)}_{h}u } \right) _\ell \) to approximate \(\left( \frac{\partial u}{\partial x}\right) (x_\ell )\) with error \({\mathcal {O}}(h^{2M})\) leads to a system of equations in the coefficients \(\lambda _i^{2M}\), for \(i = 1,2,\ldots , 2M-1\), given by

$$\begin{aligned} \left. \begin{array}{lllllll} &{}\lambda _1^{2M}&{}+\lambda _3^{2M}&{}+\lambda _5^{2M}&{}+\ldots &{}+\lambda _{2M-1}^{2M} &{}= 1\\ &{}\lambda _1^{2M}&{}+3^2\lambda _3^{2M}&{}+5^2\lambda _5^{2M}&{}+\ldots &{}+(2M-1)^2\lambda _{2M-1}^{2M} &{}= 0\\ &{}\lambda _1^{2M}&{}+3^4\lambda _3^{2M}&{}+5^4\lambda _5^{2M}&{}+\ldots &{}+(2M-1)^4\lambda _{2M-1}^{2M} &{}= 0\\ &{}\vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots &{}\vdots \\ &{}\lambda _1^{2M}&{}+3^{2M-2}\lambda _3^{2M}&{}+5^{2M-2}\lambda _5^{2M}&{}+\ldots &{}+(2M-1)^{2M-2}\lambda _{2M-1}^{2M} &{}= 0 \end{array}\right. . \end{aligned}$$
(A.4)

To solve system (A.4) and derive explicit formulas for the coefficients \(\lambda _i^{2M}\), we rewrite system (A.4) in matrix form as

$$\begin{aligned} \left( \begin{array}{ccccc} 1^0 &{} 3^0 &{} 5^0 &{} \ldots &{} (2M-1)^0 \\ 1^2 &{} 3^2 &{} 5^2 &{} \ldots &{} (2M-1)^2 \\ 1^4 &{} 3^4 &{} 5^4 &{} \ldots &{} (2M-1)^4 \\ \vdots \\ 1^{2M-2} &{} 3^{2M-2} &{} 5^{2M-2} &{} \ldots &{} (2M-1)^{2M-2} \end{array}\right) \left( \begin{array}{c} \lambda _1^{2M}\\ \lambda _3^{2M}\\ \lambda _5^{2M}\\ \vdots \\ \lambda _{2M-1}^{2M}\end{array}\right) = \left( \begin{array}{c} 1\\ 0\\ 0\\ \vdots \\ 0 \end{array}\right) . \end{aligned}$$
(A.5)

Let the matrix of system (A.5) be denoted as \(W_{2M}\). We define the vector \(\lambda ^{2M} = \left( \lambda _1^{2M},\lambda _3^{2M},\lambda _5^{2M}, \ldots , \lambda _{2M-1}^{2M}\right) ^T\). Multiplying the linear system of equations in (A.5) by any vector \(U = (U_1,U_2,\ldots ,U_M)^T \in {\mathbb {R}}^M\), we get the equation

$$\begin{aligned} U^TW_{2M}\lambda ^{2M} = U_1. \end{aligned}$$
(A.6)

Let \({\mathcal {P}}:= {\mathcal {P}}_{2M-2}^{\mathrm {even}}({\mathbb {R}})\) be the set of all even polynomials of degree \(2M-2\) with real coefficients. Associated to the vector \(U \in {\mathbb {R}}^M\), we define \(P_U \in {\mathcal {P}}\) as

$$\begin{aligned} P_U(x) = U_1+U_2(2x-1)^2+U_3(2x-1)^4+\ldots +U_M(2x-1)^{2M-2}, \end{aligned}$$
(A.7)

from which we obtain the equation

$$\begin{aligned} U^TW_{2M} = \left( P_U(1),P_U(2),P_U(3),\ldots ,P_U(M)\right) , \end{aligned}$$
(A.8)

which permits rewriting Eq. (A.6) as

$$\begin{aligned} \sum _{j=1}^M P_U(j)\lambda ^{2M}_{2j-1} = P_U\left( \frac{1}{2}\right) . \end{aligned}$$
(A.9)

Satisfying Eq. (A.6) for any \(U \in {\mathbb {R}}^M\) is equivalent to having Eq. (A.9) hold for any polynomial \(P \in {\mathcal {P}}\).

For each integer \(1\le p\le M\), we now consider the polynomials in \({\mathcal {P}}\) defined as

$$\begin{aligned} Q_p(x) = \prod _{1\le r\le M, r\ne p} \left( 1-\displaystyle \frac{(2x-1)^2}{(2r-1)^2}\right) , \end{aligned}$$
(A.10)

The polynomial \(Q_p(x)\) vanishes at all \(x = 1,2,3 \ldots , M\) except at \(x=p\). Using \(P = Q_p\) in (A.9) we have

$$\begin{aligned} Q_p(p)\lambda ^{2M}_{2p-1} = Q_p\left( \frac{1}{2}\right) = 1, \end{aligned}$$

which implies that

$$\begin{aligned} \lambda _{2p-1}^{2M} = \displaystyle \frac{1}{Q_p(p)} = \prod _{1\le r\le M, r\ne p}\left( 1-\displaystyle \frac{(2p-1)^2}{(2r-1)^2}\right) ^{-1}. \end{aligned}$$
(A.11)

We use the following identities (given without proof)

$$\begin{aligned} \prod _{1\le r\le M, r\ne p} \left( 1+\displaystyle \frac{(2p-1)}{(2r-1)}\right) ^{-1} = \displaystyle \frac{2^p(p-1)!(2M-1)!!}{(2M+2p-2)!!}, \end{aligned}$$
(A.12)

and

$$\begin{aligned} \prod _{1\le r\le M, r\ne p} \left( 1-\displaystyle \frac{(2p-1)}{(2r-1)}\right) ^{-1} = \displaystyle \frac{(-1)^{p-1}(2M-1)!!}{2^{p-1}(2M-2p)!!(2p-1)(p-1)!}, \end{aligned}$$
(A.13)

where \(p \in {\mathbb {Z}}, 1\le p\le M\).

From Eqs. (A.11), (A.12) and (A.13), and some algebraic manipulations, we can obtain the explicit formula (4.10). \(\square \)

Remark A.1

The result in (4.10) has been obtained, using other techniques, by other authors in the past (see [11, 15], and [12]). In [2], the authors prove several additional properties of the corresponding coefficients for higher order approximations of the 1D Laplace operator. Similar properties for the coefficients \(\lambda ^{2M}_{2p-1}\) can be proved. Some of these properties have been proved in [15] and [12].

Appendix B. Symbol of the Operator \({\mathcal {A}}_h\)

Following [4], we define \(K = \frac{kh}{2}\), and use Chebyshev polynomial identities to get

$$\begin{aligned} \displaystyle \sin ((2m-1)K) = \sum _{j = 1}^m \alpha _j^m \sin ^{2j-1}(K), \end{aligned}$$
(B.1)

where, for \(j = 1,2,\ldots ,m\)

$$\begin{aligned} \displaystyle \alpha _j^m:= (-1)^{2m-j-1}\frac{2m-1}{m+j-1} \frac{(m+j-1)!}{(m-j)!}\frac{2^{2j-2}}{(2j-1)!}. \end{aligned}$$
(B.2)

Using the identity (B.1) and rearranging terms, we obtain

$$\begin{aligned} \displaystyle \sum _{p=1}^M \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \sin \left( (2p-1) \frac{kh}{2} \right)&= \displaystyle \sum _{p=1}^M \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \sum _{\ell =1}^{p} \alpha _\ell ^p\sin ^{2\ell -1}\left( \frac{kh}{2} \right) \nonumber \\&= \sum _{\ell =1}^{M}\left( \sum _{p = \ell }^{M} \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \alpha _\ell ^p\right) \sin ^{2\ell -1}\left( \frac{kh}{2} \right) . \end{aligned}$$
(B.3)

By definition of \(\displaystyle \lambda _{2p-1}^{(2M)}\) and \(\displaystyle \alpha _\ell ^p\), we have

$$\begin{aligned} \displaystyle \sum _{p = \ell }^{M} \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \alpha _\ell ^p = \sum _{p = \ell }^{M} \frac{1}{2p-1}\frac{(-1)^{3p-\ell -2}2^{2\ell -1}[(2M-1)!!]^2 (p+\ell -2)!}{(2M+2p-2)!!(2M-2p)!!(p-\ell )!(2\ell -1)!}. \end{aligned}$$
(B.4)

Using the fact that \((2n)!! = 2^n n!\) and changing index from \(p = j+ \ell \) to index j, we get

$$\begin{aligned}\displaystyle \sum _{p = \ell }^M \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \alpha _\ell ^p&= \sum _{j = 0}^{M-\ell } \frac{1}{(2j + 2\ell -1)}\frac{(-1)^{3j+2\ell -2}2^{2\ell -1}[(2M-1)!!]^2(j+2 \ell -2)!}{(2M+2j+2\ell -2)!!(2M-2j-2\ell )!!j!(2\ell -1)!} \\&= \sum _{j=0}^{M-\ell } \frac{1}{2j+2\ell -1} \frac{(-1)^j 2^{2\ell -1}[(2M-1)!!]^2(2\ell +j-2)!}{2^{M+j+\ell -1}(M+j+\ell -1)!2^{M-j-\ell }(M-j-\ell )! j!(2\ell -1)!}\\&= \frac{[(2M-1)!!]^2 2^{2\ell }}{2^{2M}(2\ell -1)!} \sum _{j=0}^{M-\ell } \frac{(-1)^j (2\ell +j-2)!}{(2j+2\ell -1)!(M+j+\ell -1)!(M-j-\ell )!j!}. \end{aligned}$$

Using the following recursion formulas, which we state without proof, for \(n \in {\mathbb {N}}\),

$$\begin{aligned} \displaystyle \Gamma (n+1) = n \Gamma (n); \qquad \text {with} \qquad \Gamma \left( n + \frac{1}{2} \right) := \frac{(2n-1)!!\sqrt{\pi }}{2^n}, \end{aligned}$$
(B.5)

we then have

$$\begin{aligned} \displaystyle \sum _{p = \ell }^M \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \alpha _\ell ^p = \frac{[(2M-1)!!]^2 2^{2\ell }}{2^{2M}(2\ell -1)!} \frac{[\Gamma (\ell - \frac{1}{2})]^2}{4[\Gamma \left( M + \frac{1}{2}\right) ]^2} = \frac{[(2\ell -3)!!]^2}{(2\ell -1)!}, \end{aligned}$$
(B.6)

and

$$\begin{aligned} \displaystyle \sum _{p=1}^M \frac{\lambda _{2p-1}^{(2M)}}{2p-1} \sin \left( (2p-1) \frac{kh}{2} \right) = \sum _{\ell = 1}^M \frac{[(2\ell -3)!!]^2}{(2\ell -1)!} \sin ^{2\ell - 1}\left( \frac{kh}{2} \right) . \end{aligned}$$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokil, V.A., Cheng, Y., Jiang, Y. et al. High Spatial Order Energy Stable FDTD Methods for Maxwell’s Equations in Nonlinear Optical Media in One Dimension. J Sci Comput 77, 330–371 (2018). https://doi.org/10.1007/s10915-018-0716-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0716-8

Keywords

Navigation