Abstract
The study of surface mappings or deformations plays an important role for various applications in computer visions and graphics. An accurate and effective method to measure and control geometric distortions of the mapping is therefore necessary. Quasiconformality, which captures the local geometric distortion of a surface mapping, is a useful tool for this purpose. In discrete setting, surfaces are often represented by point clouds. Although quasiconformal theories are well developed in the continuous setting, the concept of quasiconformality on point clouds is still lacking. In this paper, we propose a geometric quantity, called the Point Cloud Beltrami Coefficient (PCBC), to measure quasiconformality of a point cloud mapping. Its ability to measure the local geometric distortion of a mapping is theoretically and numerically validated. Moreover, we propose an algorithm to solve for a point cloud mapping with a prescribed PCBC. Numerical experiments have been carried out on both synthetic and real point cloud data, which demonstrate the efficacy of the proposed algorithm.









Similar content being viewed by others
References
Ahlfors, L.: On quasiconformal mappings. J. Anal. Math. 3(1), 1–58 (1953)
Ahlfors, L. V.: Conformality with respect to Riemannian metrics. na (1955)
Ahlfors, L.V., Earle, C.J.: Lectures on Quasiconformal Mappings. American Mathematical Society, Providence (1966)
Alexander, N., Emil, S., Yehoshua, Z. Y.: Computing quasi-conformal maps in 3d with applications to geometric modeling and imaging. In: 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1–5. IEEE, New York (2014)
Audette, M.A., Ferrie, F.P., Peters, T.M.: An algorithmic overview of surface registration techniques for medical imaging. Med. Image Anal. 4(3), 201–217 (2000)
Barhak, J., Fischer, A.: Parameterization and reconstruction from 3d scattered points based on neural network and pde techniques. IEEE Trans. Visual Comput. Gr. 7(1), 1–16 (2001)
Belinskii, P., Godunov, S., Ivanov, Y.B., Yanenko, I.: The use of a class of quasiconformal mappings to construct difference nets in domains with curvilinear boundaries. USSR Comput. Math. Math. Phys. 15(6), 133–144 (1975)
Belytschko, T., Lu, Y.Y., Gu, L., et al.: Element free galerkin methods. Int. J. Numer. Meth. Eng. 37(2), 229–256 (1994)
Bers, L.: Mathematical Aspects of Subcritical and Transonic Gas Dynamics. Wiley, New York (1958)
Bers, L.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc. 83(6), 1083–1100 (1977)
Bers, L., Nirenberg, L.: On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste 1(954), 1 (1954)
Bers, L., Nirenberg, L.: On linear and non-linear elliptic boundary value problems in the plane. Convegno Internazionale Suelle Equaziono Cremeonese, Roma 1, 141–167 (1955)
Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics, Bellingham (1992)
Carleson, L., Gamelin, T.W., Devaney, R.L.: Complex dynamics. SIAM Rev. 36(3), 504–504 (1994)
Chan, H.L., Li, H., Lui, L.M.: Quasi-conformal statistical shape analysis of hippocampal surfaces for alzheimer disease analysis. J. Neurocomput. 175(A), 177–187 (2016)
Chan, H.L., Lui, L.M.: Detection of n-dimensional shape deformities using n-dimensional quasi-conformal maps. J. Geom. Imaging Comput. 1(4), 395–415 (2014)
Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imaging Sci. 8(1), 67–94 (2015)
Choi, P.T., Lui, L.M.: Fast disk conformal parameterization of simply-connected open surfaces. J. Sci. Comput. 65(3), 1065–1090 (2015)
Choi, P.T., Ho, K.T., Lui, L.M.: Spherical conformal parameterization of genus-0 point clouds for meshing. SIAM J. Imaging Sci. 9(4), 1582–1618 (2016)
Daripa, P.: On a numerical method for quasi-conformal grid generation. J. Comput. Phys. 96(1), 229–236 (1991)
Floater, M., Hormann, K.: Parameterization of triangulations and unorganized points. In: Tutorials on Multiresolution in Geometric Modelling, pp. 287–316. Springer, Berlin (2002)
Floater, M. S.: Meshless parameterization and b-spline surface approximation. In: The Mathematics of Surfaces IX, pp. 1–18. Springer, Berlin (2000)
Floater, M.S.: Analysis of curve reconstruction by meshless parameterization. Numer. Algorithms 32(1), 87–98 (2003)
Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)
Floater, M.S., Reimers, M.: Meshless parameterization and surface reconstruction. Comput. Aided Geom. Des. 18(2), 77–92 (2001)
Gardiner, F., Lakic, N.: Quasiconformal teichmüller theory. Number 76. American Mathematical Society, Providence (2000)
Grotzsch, H.: Uber die verzerrung bei schlichten nichtkonformen abbildungen und eine damit zusammenh angende erweiterung des picardschen. Rec. Math 80, 503–507 (1928)
Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Gr. 12(3), 375–385 (2006)
Ho, K.T., Lui, L.M.: QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv. Comput. Math. 42(2), 279–312 (2016)
Hormann, K., Reimers, M.: Triangulating point clouds with spherical topology. Curve and Surface Design: Saint-Malo, pp. 215–224 (2002)
Lai, R., Liang, J., Zhao, H.: A local mesh method for solving pdes on point clouds. Inverse Prob. Imaging 7(3), 737–755 (2013)
Lam, K.C., Lui, L.M.: Landmark-and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imaging Sci. 7(4), 2364–2392 (2014)
Lehto, O., Virtanen, K.I., Lucas, K.: Quasiconformal Mappings in the Plane, vol. 126. Springer, New York (1973)
Li, E., Che, W., Zhang, X., Zhang, Y.-K., Xu, B.: Direct quad-dominant meshing of point cloud via global parameterization. Comput. Gr. 35(3), 452–460 (2011)
Li, E., Zhang, X., Che, W., Dong, W.: Global parameterization and quadrilateral meshing of point cloud. In: ACM SIGGRAPH ASIA 2009 Posters, p. 54. ACM, New York (2009)
Liang, J., Lai, R., Wong, T. W., Zhao, H.: Geometric understanding of point clouds using laplace-beltrami operator. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 214–221. IEEE, New York (2012)
Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)
Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media, Berlin (2005)
Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using beltrami representation. SIAM J. Imaging Sci. 6(4), 1880–1902 (2013)
Lui, L.M., Lam, K.C., Yau, S.-T., Gu, X.: Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J. Imaging Sci. 7(1), 391 (2014)
Lui, L.M., Wen, C.: Geometric registration of high-genus surfaces. SIAM J. Imaging Sci. 7(1), 337–365 (2014)
Lui, L.M., Wong, T.W., Thompson, P., Chan, T., Gu, X., Yau, S.-T.: Compression of surface registrations using beltrami coefficients. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2839–2846. IEEE, New York (2010)
Lui, L. M., Wong, T. W., Thompson, P., Chan, T., Gu, X., Yau, S.-T.: Shape-based diffeomorphic registration on hippocampal surfaces using beltrami holomorphic flow. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010, pp. 323–330. Springer, New York (2010)
Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.T.: Detection of shape deformities using yamabe flow and beltrami coefficients. Inverse Problems Imaging 4(2), 311–333 (2010)
Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.-T.: Optimization of surface registrations using beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)
Mastin, C., Thompson, J.: Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput. 5(2), 305–310 (1984)
Miao, Y.-W., Feng, J.-Q., Xiao, C.-X., Peng, Q.-S., Forrest, A.R.: Differentials-based segmentation and parameterization for point-sampled surfaces. J. Comput. Sci. Technol. 22(5), 749–760 (2007)
Mirzaei, D.: Analysis of moving least squares approximation revisited. J. Comput. Appl. Math. 282, 237–250 (2015)
Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2011)
Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets. Auton. Robots 34(3), 133–148 (2013)
Pulford, J.H., Walden, B.L.: Angle distortion and conformality. Expos. Math. 21, 33–45 (2003)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)
Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Gr. Models 76(2), 57–69 (2014)
Tam, G.K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.-F., Rosin, P.L.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Visual Comput. Gr. 19(7), 1199–1217 (2013)
Tat, L.Y., Chun, L.K., Ming, L.L.: Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps. J. Sci. Comput. 67(3), 926–954 (2016)
Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Gr. 30(6), 917–926 (2006)
Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707. Wiley Online Library, New York (2011)
Wang, L., Yuan, B., Miao, Z.: 3d point clouds parameterization alogrithm. In: 9th International Conference on Signal Processing, 2008. ICSP 2008, pp. 1410–1413. IEEE, New York (2008)
Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. In: Computer Graphics Forum, vol. 31, pp. 1679–1689. Wiley Online Library, New work (2012)
Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2010)
Wong, T., Zhao, H.: Computing surface uniformizations using discrete beltrami flow. SIAM J. Sci. Comput. 37(3), A1342–A1364 (2015)
Wong, T. W., Gu, X., Chan, T. F., Lui, L. M.: Parallelizable inpainting and refinement of diffeomorphisms using beltrami holomorphic flow. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2383–2390. IEEE, New York (2011)
Zeng, W., Gu, X. D.: Registration for 3d surfaces with large deformations using quasi-conformal curvature flow. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2457–2464. IEEE, New York (2011)
Zeng, W., Lui, L.M., Luo, F., Chan, T.F.-C., Yau, S.-T., Gu, D.X.: Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numer. Math. 121(4), 671–703 (2012)
Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and parameterization. Comput. Gr. 34(3), 198–208 (2010)
Zwicker, M., Gotsman, C.: Meshing point clouds using spherical parameterization. In Proceedings of the Eurographics Symposium, Point-Based Graphics (2004)
Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3d: an interactive system for point-based surface editing. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 322–329. ACM, New York (2002)
Acknowledgements
L.M. Lui is supported by HKRGC GRF (Project ID: 14303414).
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix
A. Proof of Lemma 1
Proof
Let \(g:\varOmega \rightarrow \mathbb {R}\) be an arbitrary function. We use the notation \(\partial _j q_{g,p}(x)\) to denote diffuse derivatives approximating partial derivatives of g near an arbitrary point p. Let \(\tilde{E}_{g,j}(x) = \partial _j q_{g,x}(x) - \partial _j g(x)\) be the error of diffuse derivatives.
As stated above, for each point \(x\in \varOmega \),
From Definition 4, the following equation can be obtained.
Then by comparing \(\tilde{\mu }\) with \(\mu (f)\), one can derive
where \(|e_j|\le 2\sqrt{2} C_{MLS} \Vert f\Vert _{C^3(\varOmega ^*)} h^2\), \(j=1,2\).
According to the definition of Beltrami coefficient, \(\partial _z f \ne 0\) everywhere in the compact domain \(\varOmega \), which implies that \(|\partial _z f|\) has a positive lower bound, denoted by L. Without loss of generality, assume \(\Vert f\Vert _{C^3(\varOmega ^*)}>0\). Let \(C_1(f) = \sqrt{\frac{L}{4\sqrt{2}C_{MLS}\Vert f\Vert _{C^3(\varOmega ^*)}}}\), then \(C_1(f)>0\), and \(h\le C_1(f)\) implies \(|e_2|\le L/2\). Then,
where \(C_2(f) = \frac{32C_{MLS}\Vert f\Vert _{C^3(\varOmega ^*)} \Vert f\Vert _{C^1(\varOmega )}}{L^2}\).
With a similar argument, one can prove the result for standard Beltrami coefficient. \(\square \)
B. Proof of Lemma 2
Proof
Fix \(p\in \mathcal {P}_1\). Let \(x_0 = \phi _1^{-1}(p)\) and \(x_1 = {\varvec{\varphi }}_1^{-1}(p)\). Denote \(\mu _1 = \mu (\phi _2^{-1}\circ f\circ \phi _1)\). Let \(\tilde{\sigma }_1\) and \(\tilde{\sigma }_2\) be the diffuse Beltrami coefficient of \({\varvec{\varphi }}_2^{-1}\circ f \circ {\varvec{\varphi }}_1\) and \(\phi _2^{-1}\circ f\circ \phi _1|_{{\varvec{\varphi }}_1^{-1}(\mathcal {P}_1)}\). Then
Consider MLS on \({\varvec{\varphi }}_1^{-1}(\mathcal {P}_1)\), let \(a_{k,j}(y) = (q_k(y)^TA_y)_j\), \(k=1,2\). By definition,
where \([u_{1,j},v_{1,j}]^T = {\varvec{\varphi }}_2^{-1}(f(p_j))\), and \([u_{2,j},v_{2,j}]^T = \phi _2^{-1}\circ f\circ \phi _1\circ {\varvec{\varphi }}_1^{-1}(p_j)\). Hence
By MLS theory, \(\sum _j |a_{k,j}(y)| \le C_2h_1^{-1}\). Then \( |\sum _j u_{1,j}a_{k,j} - \sum _j u_{2,j}a_{k,j}| \le C_1C_2\epsilon /h_1 \), and \(|\sum _j v_{1,j}a_{k,j} - \sum _j v_{2,j}a_{k,j}|\le C_1C_2\epsilon /h_1\). Moreover, from the error analysis of MLS,
By a similar argument as in the proof of Proposition 1,
where \(L = \min _{\varOmega } |\partial _z (\phi _2^{-1}\circ f\circ \phi _1)|>0\). Therefore,
where \(C_5 = C_4 + 2\Vert \mu _1\Vert _{C^1(\varOmega )}h_0\). \(\square \)
Rights and permissions
About this article
Cite this article
Meng, T., Lui, L.M. PCBC: Quasiconformality of Point Cloud Mappings. J Sci Comput 77, 597–633 (2018). https://doi.org/10.1007/s10915-018-0724-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0724-8