Abstract
An innovative block structured with sparse blocks multi iterative preconditioner for linear multistep formulas used in boundary value form is proposed here to accelerate GMRES, FGMRES and BiCGstab(l). The preconditioner is based on block \(\omega \)-circulant matrices and a short-memory approximation of the underlying Jacobian matrix of the fractional partial differential equations. Convergence results, numerical tests and comparisons with other techniques confirm the effectiveness of the approach.




Similar content being viewed by others

References
Axelsson, A., Verwer, J.: Boundary value techniques for initial value problems in ordinary differential equations. Math. Comp. 45, 153–171 (1985)
Bertaccini, D.: P-Circulant Preconditioners and the Systems of the ODE Codes, IMACS Series in Computational and Applied Mathematics, vol. 5, pp. 179–193. IMACS, New Brunswick (1999)
Bertaccini, D.: A circulant preconditioner for the systems of LMF-based ODE codes. SIAM J. Sci. Comput. 22(3), 767–786 (2000)
Bertaccini, D.: Reliable preconditioned iterative linear solvers for some numerical integrators. Numer. Linear Algebra Appl. 8(2), 111–125 (2001)
Bertaccini, D.: The spectrum of circulant-like preconditioners for some general linear multistep formulas for linear boundary value problems. SIAM J. Numer. Anal. 40(5), 1798–1822 (2002)
Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential equations using short-memory principle and approximate inverses. Numer. Algorithms 74(4), 1061–1082 (2017). https://doi.org/10.1007/s11075-016-0186-8
Bertaccini, D., Durastante, F.: Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications, Monographs and Research Notes in Mathematics. CRC Press, Chapman & Hall/CRC, London (2018)
Bertaccini, D., Ng, M.K.: Skew–circulant preconditioners for systems of LMF–based ODE codes. In: International Conference on Numerical Analysis and Its Applications, pp. 93–101. Springer (2000)
Bertaccini, D., Ng, M.K.: The convergence rate of block preconditioned systems arising from LMF-based ode codes. BIT 41(3), 433–450 (2001)
Bertaccini, D., Ng, M.K.: Band-Toeplitz preconditioned GMRES iterations for time-dependent PDEs. BIT 43(5), 901–914 (2003)
Bertaccini, D., Ng, M.K.: Block \(\{\omega \}\)-circulant preconditioners for the systems of differential equations. Calcolo 40(2), 71–90 (2003)
Brugnano, L., Trigiante, D.: Solving Differential Equations by Multistep Initial and Boundary Value Methods. Stability and Control: Theory, Methods and Applications. Taylor & Francis, London (1998)
Chan, R., Ng, M., Jin, X.Q.: Strang-type preconditioner for systems of LMF-based ODE codes. IMA J. Numer. Anal. 21(2), 451–62 (2001)
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comp. Phys. 307, 262–279 (2016)
Fischer, R., Huckle, T.: Using \(\omega \)-circulant matrices for the preconditioning of toeplitz systems. Selçuk J. Appl. Math 4, 71–88 (2003)
Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, 1st edn. Springer, New York (2017)
Gu, X.M., Huang, T.Z., Ji, C.C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection–diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)
Gu, X.M., Huang, T.Z., Zhao, X.L., Li, H.B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)
Hanke, M., Nagy, J.G.: Toeplitz approximate inverse preconditioner for banded Toeplitz matrices. Numer. Algorithms 7(2), 183–199 (1994). https://doi.org/10.1007/BF02140682
Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Numerical Analysis and Scientific Computing Series. CRC Press, Chapman & Hall/CRC, London (2015)
Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comp. Phys. 256, 109–117 (2014)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)
Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)
Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. (2006). https://doi.org/10.1155/IJMMS/2006/48391
Pang, H.K., Sun, H.W.: Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 66(1), 41–66 (2016)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)
Popolizio, M.: A matrix approach for partial differential equations with riesz space fractional derivatives. Eur. Phys. J. Spec. Top. 222(8), 1975–1985 (2013)
Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Saad, Y., Schultz, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
Sleijpen, G.L., Fokkema, D.R.: BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)
Sonneveld, P., Van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31(2), 1035–1062 (2008)
Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)
Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, Cambridge (2003)
Wang, H., Wang, K.: An \(o(n \log ^2 n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comp. Phys. 230(21), 7830–7839 (2011)
Wang, H., Wang, K., Sircar, T.: A direct \(o(n \log ^2 n)\) finite difference method for fractional diffusion equations. J. Comp. Phys. 229(21), 8095–8104 (2010)
Zhang, L., Sun, H.W., Pang, H.K.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comp. Phys. 299, 130–143 (2015)
Acknowledgements
We wish to thank two anonymous referees for their constructive comments which have improved the readability of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are members of the INdAM research group GNCS and this work has been partially supported by the GNCS 2018 Project “Tecniche innovative per problemi di algebra lineare”.
Rights and permissions
About this article
Cite this article
Bertaccini, D., Durastante, F. Limited Memory Block Preconditioners for Fast Solution of Fractional Partial Differential Equations. J Sci Comput 77, 950–970 (2018). https://doi.org/10.1007/s10915-018-0729-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0729-3