Skip to main content
Log in

A New Robust Carbuncle-Free Roe Scheme for Strong Shock

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper devises a new robust carbuncle-free Roe Riemann solver for strong shock, different from hybrid method, entropy fix, Liou’s conjecture (J Comput Phys 160:623–648, 2000) and artificial viscosity (Rodionov in J Comput Phys 345:308–329, 2017). Roe scheme encounters carbuncle phenomenon, violates entropy condition and lacks positivity property. The remedy integrates shear viscosity into momentum flux to damp undesirable perturbation and prevents unstable vorticity mode from triggering shock instability. Compared to HLL scheme, shear viscosity is properly established through dimensional analysis and analogy method. The non-linear wave speeds are slightly modified by incorporating the neighboring cell information for positive conservation. The pressure-based sensing function is applied to preserve shear layer while keeping shock robustness. The resulting scheme is very easily implemented by converting the existing Roe code. The matrix stability analysis confirms that this approach is shock-stable and more robust than entropy fix. A series of numerical results demonstrate its potential features: positivity-preserving property, entropy-satisfying property, accurate boundary-layer resolution and high robustness against shock instability. In addition, it signifies that the reason to cause shock instability for Roe scheme may be not the pressure difference term in mass flux, but the inadequate shear viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Liou, M.S.: Mass flux schemes and connection to shock instability. J. Comput. Phys. 160, 623–648 (2000)

    Article  Google Scholar 

  2. Rodionov, A.V.: Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon. J. Comput. Phys. 345, 308–329 (2017)

    Article  MathSciNet  Google Scholar 

  3. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  4. Peery, K.M., Imlay, S.T.: Blunt Body Flow Simulations, AIAA paper 88-2924 (1988)

  5. Quirk, J.: A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 18, 555–574 (1994)

    Article  MathSciNet  Google Scholar 

  6. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  7. Nishikawa, H., Kitamura, K.: Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers. J. Comput. Phys. 227, 2560–2581 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ren, Y.-X.: A robust shock-capturing scheme based on rotated Riemann solvers. Comput. Fluids 32, 1379–1403 (2003)

    Article  Google Scholar 

  9. Levy, D.W., Powell, K.G., van Leer, B.: An Implementation of a Grid-Independent Upwind Scheme for the Euler Equations, AIAA paper 89-1931 (1989)

  10. Yee, H.C.: Upwind and Symmetric Shock-Capturing Schemes, NASA TM-289464 (1987)

  11. Kim, S.S., Kim, C., Rho, O.H., Hong, S.K.: Cures for the shock instability: development of a shock-stable Roe scheme. J. Comput. Phys. 185, 342–374 (2003)

    Article  MathSciNet  Google Scholar 

  12. Xu, K., Li, Z.: Dissipative mechanism in Godunov-type schemes. Int. J. Numer. Methods Fluids 37, 1–22 (2001)

    Article  MathSciNet  Google Scholar 

  13. Dumbser, M., Morschetta, J.M., Gressier, J.: A matrix stability analysis of the carbuncle phenomenon. J. Comput. Phys. 197, 647–670 (2004)

    Article  Google Scholar 

  14. Liou, M.S.: A sequal to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996)

    Article  MathSciNet  Google Scholar 

  15. Pullin, D.I.: Direct simulation methods for compressible inviscid ideal gas flow. J. Comput. Phys. 34, 231–244 (1980)

    Article  Google Scholar 

  16. Macrossan, M.N., Oliver, R.I.: A kinetic theory solution method for the Navier–Stokes equations. Int. J. Numer. Methods Fluids 17, 177–193 (1993)

    Article  Google Scholar 

  17. Gressier, J., Moschetta, J.M.: Robustness versus accuracy in shock-wave computations. Int. J. Numer. Methods Fluids 33, 313–332 (2000)

    Article  Google Scholar 

  18. Shen, Z.J., Yan, W., Yuan, G.W.: A robust HLLC-type Riemann solver for strong shock. J. Comput. Phys. 309, 185–206 (2016)

    Article  MathSciNet  Google Scholar 

  19. van Leer, B.: The development of numerical fluid mechanics and aerodynamics since the 1960s: US and Canada. In: Hirschel, E.H., et al. (eds.): 100 Volumes of ‘Notes on Numerical Fluid Mechanics’, pp. 159–185. Springer, Berlin (2009)

    Google Scholar 

  20. Chen, Z., Huang, X., Ren, Y.X., Zhou, M.: General procedure for Riemann solver to eliminate carbuncle and shock instability. AIAA J. 55, 2002–2015 (2017)

    Article  Google Scholar 

  21. Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189, 305–329 (2003)

    Article  MathSciNet  Google Scholar 

  22. Moschetta, J.-M., Gressier, J., Robinet, J.-C., Casalis, G.: The carbuncle phenomenon: a genuine Euler instability? In: Toro, E.F. (ed.) Godunov Methods, Theory and Applications, pp. 639–645. Kluwer Academic/Plenum Publishers, Dordrecht (1995)

    Google Scholar 

  23. Shen, Z.J., Yan, W., Yuan, G.W.: A stability analysis of hybrid schemes to cure shock instability. Commun. Comput. Phys. 15, 1320–1342 (2014)

    Article  MathSciNet  Google Scholar 

  24. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357 (1983)

    Article  MathSciNet  Google Scholar 

  25. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  Google Scholar 

  26. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation Laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MathSciNet  Google Scholar 

  27. Yee, H.C., Klopfer, G.H., Montagné, J.L.: High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows. J. Comput. Phys. 88, 31–61 (1990)

    Article  MathSciNet  Google Scholar 

  28. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988)

    Article  MathSciNet  Google Scholar 

  29. Einfeldt, B., Munz, C.D., Roe, P.L., Sjogreen, B.: On Godunov-type methods near low density. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  Google Scholar 

  30. Kim, S.D., Lee, B.J., Lee, H.J., Jeung, I.S.: Robust HLLC Riemann solver with weighted average flux scheme for strong shock. J. Comput. Phys. 228, 7634–7642 (2009)

    Article  MathSciNet  Google Scholar 

  31. van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  32. Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  33. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)

    Article  MathSciNet  Google Scholar 

  34. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  Google Scholar 

  35. Kitamura, K., Shima, E., Nakamura, Y., Roe, P.L.: Evaluation of Euler fluxes for hypersonic heating computations. AIAA J. 48, 763–776 (2010)

    Article  Google Scholar 

  36. Henderson, J., Menart, J.A.: Grid Study on Blunt Bodies with the Carbuncle Phenomenon, AIAA Paper 97-3904 (1997)

  37. Yoon, S., Jameson, A.: Lower-upper symmetric-Gauss–Seidel method for the Euler and Navier–Stokes equations. AIAA J. 9, 1025–1026 (1988)

    Article  Google Scholar 

  38. Woodward, P.R., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  39. Cook, P.H., McDonald, M.A., Firmin, M.C.P.: AIRFOIL RAE 2822 Pressure Distributions, Boundary Layer and Wake Measurements, AGARD Advisory Report 138 (1979)

  40. Klopfer, G.H., Yee, H.: Viscous Hypersonic Shock-on-Shock Interaction on Blunt Cowl Lips, AIAA paper 1988-0233 (1988)

  41. Gnoffo, P.A.: Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids. In: 47th AIAA Aerospace Sciences Meeting, Orlando (2009) (Paper 2009-0599)

  42. Gnoffo, P.A.: Updates to multi-dimensional flux reconstruction for hypersonic simulations on tetrahedral grids. In: 48th AIAA Aerospace Sciences Meeting, Orlando (2010) (Paper 2010-1271)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11402016) and the Academic Excellence Foundation of BUAA for Ph.D. Students. All authors are grateful to the anonymous reviewers for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Ss., Yan, C., Lin, Bx. et al. A New Robust Carbuncle-Free Roe Scheme for Strong Shock. J Sci Comput 77, 1250–1277 (2018). https://doi.org/10.1007/s10915-018-0747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0747-1

Keywords

Navigation