Skip to main content
Log in

Local Discontinuous Galerkin Method with Implicit–Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we shall present two fully-discrete local discontinuous Galerkin methods, coupled with multi-step implicit–explicit time discretization up to second order, for solving the two-dimensional incompressible miscible displacement problem. To avoid the solving of nonlinear algebraic systems, the extrapolation linearization is adopted to diffusion–dispersion tensor. Under weak temporal-spatial conditions, the optimal error estimates in \(L^{\infty }(L^{2})\) norm for both concentration and velocity are derived. Numerical experiments are also given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problem of low regularity. SIAM J. Numer. Anal. 47, 3720–3743 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bear, J., Bachmat, Y.: A generalized theory of hydrodynamic dispersion in porous media. Symposium of Haifa. Int. Assoc. Sci. Hydrol. 72, 7–16 (1967)

    Google Scholar 

  4. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)

    Book  MATH  Google Scholar 

  5. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the LDG method for convection diffusion problems. Math. Comput. 71, 455–478 (2002)

    Article  MATH  Google Scholar 

  6. Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, Englewood Cliffs (1975)

    Google Scholar 

  7. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin methods for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. R.A.I.R.O. Analyse numérique 17, 249–256 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durán, R.G.: On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method. SIAM J. Numer. Anal. 25, 989–1001 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, H., Yu, F., Yang, Y.: Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71, 615–633 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, H., Zhang, Q., Yang, Y.: A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media. Sci. China Math. 57, 2301–2320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaffre, J., Roberts, J.E.: Upstream weighting and mixed finite elements in the simulation of miscible displacements. ESAIM: M2AN 19, 443–460 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B., Wang, J., Sun, W.: The stability and convergence of fully Galerkin–Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivière, B.: Discontinuous Galerkin Finite Element Methods for Solving the Miscible Displacement Problem in Porous Media. Ph.D. Thesis, The University of Texas at Austin (2000)

  21. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. Numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics CRM Barcelona, pp. 149–201. Basel, Birkhäuser (2009)

    Google Scholar 

  22. Sun, S., Rivière, B., Wheeler, M.F.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In: Chan, T., et al. (eds.) Recent Progress in Computational and Applied PDEs, pp. 323–351. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  23. Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  Google Scholar 

  26. Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wheeler, M.F., Darlow, B.L.: Interiori Penalty Galerkin Methods for Miscible Displacement Problems in Porous Media. Computational Methods in Nonlinear Mechanics, pp. 458–506. North-Holland, Amsterdam (1980)

    Google Scholar 

  28. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

H. Wang: Research supported by NSFC Grants 11601241 and 11671199, Natural Science Foundation of Jiangsu Province Grant BK20160877, and NUPTSF Grant NY215067. J. Zheng, F. Yu and H. Guo: Research supported by NSFC Grant 11571367 and the Fundamental Research Funds for the Central Universities. Q. Zhang: Research supported by NSFC Grants 11671199 and 11571290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zheng, J., Yu, F. et al. Local Discontinuous Galerkin Method with Implicit–Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media. J Sci Comput 78, 1–28 (2019). https://doi.org/10.1007/s10915-018-0752-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0752-4

Keywords

Mathematics Subject Classification

Navigation