Abstract
In this paper, we shall present two fully-discrete local discontinuous Galerkin methods, coupled with multi-step implicit–explicit time discretization up to second order, for solving the two-dimensional incompressible miscible displacement problem. To avoid the solving of nonlinear algebraic systems, the extrapolation linearization is adopted to diffusion–dispersion tensor. Under weak temporal-spatial conditions, the optimal error estimates in \(L^{\infty }(L^{2})\) norm for both concentration and velocity are derived. Numerical experiments are also given to demonstrate the theoretical results.

Similar content being viewed by others

References
Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problem of low regularity. SIAM J. Numer. Anal. 47, 3720–3743 (2009)
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)
Bear, J., Bachmat, Y.: A generalized theory of hydrodynamic dispersion in porous media. Symposium of Haifa. Int. Assoc. Sci. Hydrol. 72, 7–16 (1967)
Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Springer, New York (1990)
Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the LDG method for convection diffusion problems. Math. Comput. 71, 455–478 (2002)
Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, Englewood Cliffs (1975)
Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin methods for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)
Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. R.A.I.R.O. Analyse numérique 17, 249–256 (1983)
Durán, R.G.: On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method. SIAM J. Numer. Anal. 25, 989–1001 (1988)
Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)
Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)
Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J. Sci. Comput. 53, 102–128 (2012)
Guo, H., Yu, F., Yang, Y.: Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71, 615–633 (2017)
Guo, H., Zhang, Q., Yang, Y.: A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media. Sci. China Math. 57, 2301–2320 (2014)
Jaffre, J., Roberts, J.E.: Upstream weighting and mixed finite elements in the simulation of miscible displacements. ESAIM: M2AN 19, 443–460 (1985)
Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)
Li, B., Wang, J., Sun, W.: The stability and convergence of fully Galerkin–Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)
Rivière, B.: Discontinuous Galerkin Finite Element Methods for Solving the Miscible Displacement Problem in Porous Media. Ph.D. Thesis, The University of Texas at Austin (2000)
Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. Numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics CRM Barcelona, pp. 149–201. Basel, Birkhäuser (2009)
Sun, S., Rivière, B., Wheeler, M.F.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In: Chan, T., et al. (eds.) Recent Progress in Computational and Applied PDEs, pp. 323–351. Kluwer Academic Publishers, Dordrecht (2002)
Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)
Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)
Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)
Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)
Wheeler, M.F., Darlow, B.L.: Interiori Penalty Galerkin Methods for Miscible Displacement Problems in Porous Media. Computational Methods in Nonlinear Mechanics, pp. 458–506. North-Holland, Amsterdam (1980)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)
Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)
Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)
Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)
Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
H. Wang: Research supported by NSFC Grants 11601241 and 11671199, Natural Science Foundation of Jiangsu Province Grant BK20160877, and NUPTSF Grant NY215067. J. Zheng, F. Yu and H. Guo: Research supported by NSFC Grant 11571367 and the Fundamental Research Funds for the Central Universities. Q. Zhang: Research supported by NSFC Grants 11671199 and 11571290.
Rights and permissions
About this article
Cite this article
Wang, H., Zheng, J., Yu, F. et al. Local Discontinuous Galerkin Method with Implicit–Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media. J Sci Comput 78, 1–28 (2019). https://doi.org/10.1007/s10915-018-0752-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0752-4
Keywords
- Local discontinuous Galerkin method
- Implicit–explicit time-marching scheme
- Incompressible miscible displacement problem
- Extrapolation linearization
- Error estimates