Skip to main content
Log in

On the Computation of Nash and Pareto Equilibria for Some Bi-objective Control Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article is concerned with the numerical solution of some multi-objective optimal control problems for systems governed by linear and semilinear parabolic equations. More precisely, for such problems, we look for Nash and Pareto equilibria, which respectively correspond to appropriate noncooperative and cooperative strategies. First, we study the linear case and then some semilinear problems. In order to compute the solutions, we combine finite difference methods for the time discretization, finite element methods for the space discretization and fixed-point algorithms for the iterative solution of the discrete control problems. We also illustrate these techniques with several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Araruna, F.D. , Fernández-Cara, E. ,Santos, M.C.: Stackelberg–Nash exact controllability for linear and semilinear parabolic equations. In: ESAIM: COCV, vol. 21, pp. 835–856 (2015)

  2. Araruna, F.D., Fernández-Cara, E., Guerrero, S., Santos, M.C.: New results on the Stackelberg–Nash exact control of linear parabolic equations. Syst. Control Lett. 104, 78–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  4. Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. Ser. A Math. 96(3), 343–356 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Díaz, J.I., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control - A Mathematical and Numerical Investigation, pp. 17–27. Springer-Verlag, Berlin (2004)

    Chapter  Google Scholar 

  6. Guillén, F.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lions, J.-L.: Contrôle de Pareto de systèmes distribués. Le cas d’évolution. C. R. Acad. Sci. Paris, Série I 302(11), 413–417 (1986)

  8. Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4, 477–487 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nash, J.F.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pareto, V.: Cours d’conomie politique. Rouge, Laussane (1896)

    Google Scholar 

  11. Ramos, A.M., Glowinski, R., Periaux, J.: Nash equilibria for the multi-objective control of linear partial partial differential equations. J. Optim. Theory Appl. 112, 457–498 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibria problems: a computational approach. J. Optim. Theory Appl. 112, 499–516 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper was written during a stay at the Institute of Mathematics of the University of Sevilla (IMUS). The authors are indebted to this Institute for its assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitágoras P. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, P.P., Fernández-Cara, E. On the Computation of Nash and Pareto Equilibria for Some Bi-objective Control Problems. J Sci Comput 78, 246–273 (2019). https://doi.org/10.1007/s10915-018-0764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0764-0

Keywords

Mathematics Subject Classification