Abstract
Based on the work of Xu and Zhou (Math Comp 69:881–909, 2000), we establish local and parallel algorithms for the Helmholtz transmission eigenvalue problem. For the \(H^2\)-conforming finite element and the spectral element approximations, we prove the local error estimates and the efficiency of local and parallel algorithms. Numerical experiments indicate that our algorithms are easy to implement on the existing packages, and can be used to solve the transmission eigenvalue problem with local low smooth eigenfunctions efficiently.



Similar content being viewed by others
References
Cakoni, F., Cayoren, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Probl. 24, 065016 (2008)
Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn., Vol. 93 in Applied Mathematical Sciences. Springer, New York (1998)
Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)
Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14, 419–427 (2014)
Yang, Y., Han, J., Bi, H.: Error Estimates and a Two Grid Scheme for Approximating Transmission Eigenvalues (2016). arXiv: 1506.06486 V2 [math. NA]
Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)
Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60, 276–294 (2014)
An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57, 670–688 (2013)
Han, J., Yang, Y.: An \(H^m\)-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues. Sci. China Math. 60(8), 1529–1542 (2017)
Sun, J., Xu, L.: Computation of Maxwells transmission eigenvalues and its applications in inverse medium problems. Inverse Probl. 29, 104013 (2013)
Monk, P., Sun, J.: Finite element methods of Maxwell transmission eigenvalues. SIAM J. Sci. Comput. 34, B247–264 (2012)
Kleefeld, A.: A numerical method to compute interior transmission eigenvalues. Inverse Probl. 29, 104012 (2013)
Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)
Yang, Y., Han, J., Bi, H.: Non-conforming finite element methods for transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 307, 144–163 (2016)
Geng, H., Ji, X., Sun, J., Xu, L.: \(C^{0}\)IP method for the transmission eigenvalue problem. J. Sci. Comput. 68, 326–338 (2016)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp. 69, 881–909 (2000)
He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)
Yang, Y., Han, J.: The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem. Comput. Methods Appl. Mech. Eng. 289, 249–266 (2015)
Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18, 185–200 (2002)
Bi, H., Yang, Y., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 35, A2575–A2597 (2013)
Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46(1), 295–324 (2008)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Springer, Heidelberg (2006)
Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, Heidelberg (2011)
Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)
Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)
Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(29), 1–8 (2012)
Wang, M., Zhang, S.: Local A Priori and A Posteriori Errors of Finite Elements for Bibarmonic Equation. Research Report, School of Mathematical Sciences and Institute of Mathematics, Peking University (2006)
Wang, M.: On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39(2), 363–384 (2001)
Yu, X., Guo, B.: Spectral element method for mixed inhomogeneous boundary value problems of fourth order. J. Sci. Comput. 61, 673–701 (2014)
Babuska, I., Osborn, J.E.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp. 640–787. Elsevier, North Holand (1991)
Wahlbin, L.: Local Behavior in Finite Element Methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part1), Handbook of Numerical Analysis, vol. 2, pp. 355–522. Elsevier, North Holland (1991)
Verfürth, R.: A posteriori error estimates for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)
Cullum, J., Zhang, T.: Two-sided Arnoldi and nonsymmetric Lanczos algorithms. SIAM J. Matrix Anal. Appl. 24, 303–319 (2002)
Shi, Z., Wang, M.: Finite Element Methods. Scientific Publishers, Beijing (2013)
Chen, L.: iFEM: An Integrated Finite Element Method Package in MATLAB. Technical report, University of California at Irvine, Irvine (2009)
Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)
Han, J., Yang, Y.: An adaptive finite element method for the transmission eigenvalue problem. J. Sci. Comput. 69, 1279–1300 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Grant Nos. 11761022, 11561014).
Rights and permissions
About this article
Cite this article
Bi, H., Han, J. & Yang, Y. Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem. J Sci Comput 78, 351–375 (2019). https://doi.org/10.1007/s10915-018-0770-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0770-2