Skip to main content
Log in

A Schwarz Method for a Rayleigh–Bénard Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this work is to study a Schwarz domain decomposition numerical method for a stationary Rayleigh–Bénard convection problem. The model equations are the stationary version of the incompressible Navier–Stokes equations coupled with a heat equation under Boussinesq approximation. The problem is defined in a rectangular domain. The nonlinear stationary problem is dealt with a Newton method. Each step in the Newton method is solved with a Schwarz domain decomposition method with the domain partitioned into several subdomains with appropriate interface conditions. Their convergence properties are studied theoretically in a simplified domain divided in two subdomains including two artificial parameters in the equations. The numerical resolution of the problem confirms the theoretical results. The convergence rate is less than one when overlap is considered. Convergence is achieved for large values of the aspect ratio, which are inabordable for the standard Legendre collocation method. Convergence is optimal for some values of the parameters. Other advantages of this methodology compared with standard methods are parallelization and high order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pures Appl. 11, 1261–1271 (1900)

    Google Scholar 

  2. Bernardi, C., Maday, Y.: Approximations spectrales des problèmes aux limites elliptiques. Springer, Berlin (1992)

    MATH  Google Scholar 

  3. Blayo, E., Cherel, D., Rousseau, A.: Towards optimized Schwarz methods for the Navier–Stokes equations. J. Sci. Comput. 66, 275–295 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffetta, G., Ecke, R.: Two-dimensional turbulence. Ann. Rev. Fluid Mech. 44, 427–451 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brakkee, E., Vuik, C., Wesseling, P.: Domain decomposition for the incompressible Navier–Stokes equations: solving subdomains accurately and inaccurately. Int. J. Num. Meth. Fluids 26, 1217–1237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Castaño, D., Navarro, M.C., Herrero, H.: Thermoconvective vortices in a cylindrical annulus with varying inner radius. Chaos 24, 043116 (2014)

    Article  MATH  Google Scholar 

  8. Davies, G.F.: Dynamic Earth. Plates, Plumes and Mantle Convection. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  9. Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  10. Elman, H.C., Mihajlović, M.D., Silvester, D.J.: Fast iterative solvers for buoyancy driven flow problems. J. Comput. Phys. 230(10), 3900–3914 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghias, S.R., Jarvis, G.T.: Mantle convetion models with temperature and depth-dependent thermal expansivity. J. Geophys. Res. Solid Earth 113, B08408 (2008). https://doi.org/10.1029/2007JB005355

    Article  Google Scholar 

  12. Gunzburger, M., Lee, H.: An optimization-based domain decomposition method for the Navier–Stokes equations. SIAM J. Math. Anal. 37, 1455–1480 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Herrero, H., Mancho, A.M.: Influence of aspect ratio in convection due to nonuniform heating. Phys. Rev. E 57, 7336–7339 (1998)

    Article  Google Scholar 

  14. Herrero, H., Mancho, A.M.: On presssure boundary conditions for thermoconvective problems. Int. J. Numer. Meth. Fluids 39, 391–402 (2002)

    Article  MATH  Google Scholar 

  15. Herrero, H., Hoyas, S., Donoso, A., Mancho, A.M., Chacón, J.M., Portugués, R.F., Yeste, B.: Chebyshev collocation for a convective problem in primitive variable formulation. J. Sci. Comput. 8, 312–328 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Holmedal, B.: Stability of squares and rolls in Rayleigh–Bénard convection in an infinite-Prantl-number fluid between slabs. J. Fluid Mech 537, 271–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Juel, A., Mullin, T., Ben Hadid, H., Henry, D.: Three-dimensional free convection in molten gallium. J. Fluid Mech. 436, 267–281 (2001)

    Article  MATH  Google Scholar 

  18. Kong, F., Ma, Y., Lu, J.: An optimized-based domain decomposition method for numerical simulation of the incompressible Navier–Stokes flows. Num. Meth. PDEs 27, 255–276 (2011)

    Article  MATH  Google Scholar 

  19. Kumar, P.: Purely algebraic domain decomposition methods for the incompressible Navier–Stokes equations. ArXiv e-prints (2011)

  20. Mathew, T.P.A.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  21. Moresi, L.N., Solomatov, V.S.: Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7(9), 2154–2162 (1995)

    Article  MATH  Google Scholar 

  22. Muller, L., Lube, G.: A nonoverlap domain decomposition method for the nonstationary Navier–Stokes problem. ZAMM J. Appl. Math. 81, 725–726 (2001)

    Article  MATH  Google Scholar 

  23. Pla, F., Mancho, A.M., Herrero, H.: Bifurcation phenomena in a convection problem with temperature dependent viscosity at low aspect ratio. Physica D 238, 572–280 (2009)

    Article  MATH  Google Scholar 

  24. Qin, L., Xu, X.: On a parallel robin-type nonoverlap domain decomposition method. SIAM J. Numer. Anal. 44, 2539–3558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  26. Ronquist, E.: A domain decomposition solver for the steady Navier–Stokes equations. In: Llin, A., Scott, L. (eds.) Proceedings ICOSAHOM-95, pp. 469–485 (1996)

  27. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  28. Strikwerda, J., Scarbnick, C.: A domain decomposition method for incompressible flow. SIAM J. Sci. Comput. 14, 49–67 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer, Berlin (2010)

    MATH  Google Scholar 

  30. Wildlund, O.B., Keyes, D.E. (eds.): Domain Decomposition Methods in Science and Engineering XVI. Springer, Berlin (2007)

    Google Scholar 

  31. Xu, X., Chow, C., Lui, S.H.: On non overlap domain decomposition methods for the incompressible Navier–Stokes equations. ESAIM Math. Mod. Num. Anal. 39, 1251–1269 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Research Grants MTM2015-68818-R (MINECO, Spanish Government) and PEII-2014-006-A (Junta de Comunidades de Castilla-La Mancha), which include RDEF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero, H., Pla, F. & Ruiz-Ferrández, M. A Schwarz Method for a Rayleigh–Bénard Problem. J Sci Comput 78, 376–392 (2019). https://doi.org/10.1007/s10915-018-0771-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0771-1

Keywords

Mathematics Subject Classification