Skip to main content
Log in

A Local Minimax Method Using Virtual Geometric Objects: Part II—For Finding Equality Constrained Saddles

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Inspired by the method (Li, Ji and Zhou in J Sci Comput, 2018, https://doi.org/10.1007/s10915-018-0774-y) using a dynamics of points on virtual geometric objects containing a fixed local minimum and a flexible endpoint, but without knowing their explicit expressions or representative (interpolation) points, as a subsequent work presented in a self-contained manner, this paper is to develop a new local minimax method for finding equality constrained k-saddles of functionals with very different variational structures in infinite-dimensional spaces and to establish its mathematical justification including its strong dissipation law and convergence. Algorithm implementation is described by test problems in both finite and infinite dimensional spaces for computing equality constrained 1–2-saddles. Solutions are successfully computed and shown with their numerical data and profile-contour plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cameron, M., Kohn, R., Vanden-Eijnden, E.: The string method as a dynamical system. J. Nonlinear Sci. 21, 193–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cances, E., Legoll, F., Marinica, M.-C., Minoukadeh, K., Willaime, F.: Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J. Chem. Phys. 130, 114711 (2009)

    Article  Google Scholar 

  4. Cerjan, C., Miller, W.: On finding transition states. J. Chem. Phys. 75, 2800 (1981)

    Article  Google Scholar 

  5. Conti, M., Terracini, S., Verzini, G.: Infinitely many solutions to fourth order superlinear periodic problems. Transaction AMS 356, 3283–8300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Q., Zhang, L.: A constrained string method and its numerical analysis. Commun. Math. Sci. 7, 1039–1051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. E, W., Vanden-Eijnden, W.: Towards theory of transition paths. J. Stat. Phys. 123, 503–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. E, W., Ren, W., Vanden-Eijnden, E.: Simplified and improved string method for computing the minimum energy path in barrier-crossing events. J. Chem. Phys. 126, 164103 (2007)

    Article  Google Scholar 

  9. E, W., Zhou, X.: The gentlest ascent dynamics. Nonlinearity 24, 1831–1842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabian, M., Habala, P., Hajek, P., Santalucia, V.M., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Springer, New York (2001)

    Book  MATH  Google Scholar 

  11. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  12. Grantham, W.: Gradient transformation trajectory following algorithms for determining stationary min-max saddle points. Adv. Dyn. Game Theory. Annal Int. Soc. Dyn. Games 9, 639–657 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999)

    Article  Google Scholar 

  14. Horak, J.: Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems. Numer. Math. 98, 251–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to nonlinear PDEs. SIAM Sci. Comput. 23, 840–865 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Z., Ji, B., Zhou, J.: A local minimax method using virtual geometric objects: part I–for finding saddles. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0774-y

    Google Scholar 

  17. Lin, L., Cheng, X., Weinan, E., Shi, A.-C., Zhang, P.: A numerical method for the study of nucleation of ordered phases. J. Comput. Phys. 229, 1797–1809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Frazer, J., Tang, M.X.: Visualization and genetic algorithms in minimax theory for nonlinear functionals. J. Sci. Comput. 18, 49–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  20. Miller, K., Brown, L.D.: Location of saddle points and minimum energy paths by a constrained simplex optimization procedure. Theor. Chim. Acta 53, 75–93 (1979)

    Article  Google Scholar 

  21. Olsen, R.A., Kroes, G.J., Henkelman, G., Arnaldsson, A., Jónsson, H.: Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 121, 9776–9792 (2004)

    Article  Google Scholar 

  22. Palmer, J.C., Martelli, F., Liu, Y., Car, R., Panagiotopoulos, A.Z., Debenedetti, P.G.: Metastable liquid-liquid transition in a molecular model of water. Nature 510, 385–388 (2014)

    Article  Google Scholar 

  23. Peters, B., Heyden, A., Bell, A.T., Chakrabortya, A.: A growing string method for determining transition states: comparison to the nudged elastic band and string methods. J. Comput. Chem. Phys. 120, 7877–7886 (2004)

    Article  Google Scholar 

  24. Principi, E., Minicucci, M., Di Cicco, A., Trapananti, A., De Panfilis, S., Poloni, R.: Metastable phase diagram of Bi probed by single-energy x-ray absorption detection and angular dispersive x-ray diffraction. Phys. Rev. B 74, 064101 (2006)

    Article  Google Scholar 

  25. Samanta, A., Weinan, E.: Optimization-based string method for finding minimum energy path. Commun. Comput. Phys. 14, 265–275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schechter, M.: Linking Methods in Critical Point Theory. Birkhauser, Boston (1999)

    Book  MATH  Google Scholar 

  27. Schlegel, H.B.: Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J. Comput. Chem. 24, 1514–1527 (2003)

    Article  Google Scholar 

  28. Sheppard, D., Terrell, R., Henkelman, G.: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008)

    Article  Google Scholar 

  29. Yang, G.H., Chen, J.B., Zhao, B., Pan, F.: Structural and magnetic investigation of metastable alloy phases in Bi-Co multilayers. J. Alloys Compd. 365, 43–48 (2004)

    Article  Google Scholar 

  30. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogenous cases. SIAM J. Sci. Comput. 29, 1355–1374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comput. 30, 937–956 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoon, W., Perepezko, J.H.: The effect of pressure on metastable phase formation in the undercooled Bi-Sn system. J. Mater. Sci. 23, 4300–4306 (1988)

    Article  Google Scholar 

  33. Yoshida, K., Morimoto, C., Yamada, T.: New metastable alloy phase in Mn-Bi system produced by crystallization of amorphous films. J. Cryst. Growth 58, 229–235 (1982)

    Article  Google Scholar 

  34. Zhang, J., Du, Q.: Shrinking dimer dynamics and its applications to saddle point search. SIAM J. Numer. Anal. 50, 1899–1921 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, J., Du, Q.: Constrained shrinking dimer dynamics for saddle point search with constraints. J. Comput. Phys. 231, 4745–4758 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, J.: A local min-orthogonal method for finding multiple saddle points. J. Math. Anal. Appl. 291, 66–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, J.: Instability analysis of saddle points by a local minimax method. Math. Comput. 74, 1391–1411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, J.: Global sequence convergence of a local minimax method for finding multiple solutions in Banach spaces. Num. Funct. Anal. Optim. 32, 1365–1380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxiang Li or Jianxin Zhou.

Additional information

Z. Li: Supported in part by NSF of China (Nos. 11771298 and 11671251). J. Zhou: Supported in part by NSF Grant DMS-0311905.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, J. A Local Minimax Method Using Virtual Geometric Objects: Part II—For Finding Equality Constrained Saddles. J Sci Comput 78, 226–245 (2019). https://doi.org/10.1007/s10915-018-0775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0775-x

Keywords

Mathematics Subject Classification

Navigation