Skip to main content
Log in

A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees \(k-1\) and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order \(k+1\) in broken \(H^1\) norm. Finally, some numerical results are shown to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, R., Huang, X.: A compact \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 31(4), 1265–1287 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35(152), 1039–1062 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Zlámal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49(2), 789–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  6. Brenner, S.C., Gudi, T., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, 214–238 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Brenner, S.C., Sung, L.Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  10. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40(1–3), 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.): Discontinuous Galerkin Methods. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Comodi, M.I.: The Hellan–Herrmann–Johnson method: some new error estimates and postprocessing. Math. Comput. 52(185), 17–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  16. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  17. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191(34), 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14(3), 249–277 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Feng, K., Shi, Z.C.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)

    Google Scholar 

  20. Feng, X., Karakashian, O., Xing, Y. (eds.): Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer, Cham (2014)

    Google Scholar 

  21. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    MATH  Google Scholar 

  23. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79(272), 2169–2189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gudi, T.: Some nonstandard error analysis of discontinuous Galerkin methods for elliptic problems. Calcolo 47(4), 239–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytech. Scand. Civil Engrg. Ser. Norges Tekniske Vitenskapsakademi (1967)

  27. Herrmann, K.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 49–83 (1967)

    Google Scholar 

  28. Huang, J., Huang, X., Han, W.: A new \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 199(23–24), 1446–1454 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Huang, J., Shi, Z., Xu, Y.: Some studies on mathematical models for general elastic multi-structures. Sci. China Ser. A 48(7), 986–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, J., Shi, Z., Xu, Y.: Finite element analysis for general elastic multi-structures. Sci. China Ser. A 49(1), 109–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, X., Huang, J.: Error analysis of a \(C^0\) discontinuous Galerkin method for Kirchhoff plates. J. Comput. Anal. Appl. 15(1), 118–132 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Huang, X., Huang, J.: A reduced local \(C^0\) discontinuous Galerkin method for Kirchhoff plates. Numer. Methods Partial Differ. Equ. 30(6), 1902–1930 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Huang, X., Huang, J.: A superconvergent \(C^0\) discontinuous Galerkin method for Kirchhoff plates: error estimates, hybridization and postprocessing. J. Sci. Comput. 69(3), 1251–1278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43–62 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karakoc, S.B.G., Neilan, M.: A \(C^0\) finite element method for the biharmonic problem without extrinsic penalization. Numer. Methods Partial Differ. Equ. 30(4), 1254–1278 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mozolevski, I., Süli, E., Bösing, P.R.: \(hp\)-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)

    Google Scholar 

  38. Scapolla, T.: A mixed finite element method for the biharmonic problem. RAIRO Anal. Numér. 14(1), 55–79 (1980)

    MathSciNet  MATH  Google Scholar 

  39. Shi, Z., Wang, M.: Finite Element Methods, Chinese edn. Science Press, Beijing (2010)

    Google Scholar 

  40. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Süli, E., Mozolevski, I.: \(hp\)-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13–16), 1851–1863 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series, Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  43. Wells, G.N., Dung, N.T.: A \(C^0\) discontinuous Galerkin formulation for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 196(35–36), 3370–3380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their valuable suggestions and comments, which greatly improved an early version of the paper. Jianguo Huang was supported by NSFC (Grant Nos. 11571237 and 11171219). Xuehai Huang was supported by NSFC (Grant No. 11771338), Zhejiang Provincial Natural Science Foundation of China Projects (Grant No. LY17A010010), and Wenzhou Science and Technology Plan Project (Grant No. G20160019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Huang.

Appendix

Appendix

Proof of Lemma 3

Let \({\hat{K}}\) be a reference simplex and \(F_K\) an affine mapping from \({\hat{K}}\) onto K. Denote by \({\hat{v}}\) the pull back of v by the mapping \(F_K\), i.e. \({\hat{v}}:=v\circ F_K\). Since all norms are equivalent on a finite-dimensional vector space, we know

$$\begin{aligned} \Vert {\hat{v}}\Vert _{0,{\hat{K}}}^2\lesssim \sum _{{\hat{e}}\in {\mathcal {E}}_{{\hat{h}}}({\hat{K}})}\sum _{{\hat{\delta }}\in \partial {\hat{e}}}{\hat{v}}^2({\hat{\delta }}) + \sum _{{\hat{e}}\in {\mathcal {E}}_{{\hat{h}}}({\hat{K}})}\left\| P_{{\hat{e}}}^{k-2}{\hat{v}}\right\| _{0,{\hat{e}}}^2 + \left\| P_{{\hat{K}}}^{k-3}{\hat{v}}\right\| _{0,{\hat{K}}}^2. \end{aligned}$$

Then using the scaling argument we find

$$\begin{aligned} h_K^{-2}\Vert v\Vert _{0,K}^2\lesssim&\Vert {\hat{v}}\Vert _{0,{\hat{K}}}^2 \lesssim \sum _{{\hat{e}}\in {\mathcal {E}}_{{\hat{h}}}({\hat{K}})}\sum _{{\hat{\delta }}\in \partial {\hat{e}}}{\hat{v}}^2({\hat{\delta }}) + \sum _{{\hat{e}}\in {\mathcal {E}}_{{\hat{h}}}({\hat{K}})}\left\| P_{{\hat{e}}}^{k-2}{\hat{v}}\right\| _{0,{\hat{e}}}^2 + \left\| P_{{\hat{K}}}^{k-3}{\hat{v}}\right\| _{0,{\hat{K}}}^2 \\ \lesssim&\sum _{e\in {\mathcal {E}}_h(K)}\sum _{\delta \in \partial e}v^2(\delta ) + h_K^{-1}\sum _{e\in {\mathcal {E}}_h(K)}\left\| P_e^{k-2}v\right\| _{0,e}^2 + h_K^{-2}\left\| P_K^{k-3}v\right\| _{0,K}^2, \end{aligned}$$

as required. \(\square \)

Proof of Lemma 4

According to the definition of \({\widetilde{P}}_h\), it is easy to see that

$$\begin{aligned} P_K^{k-3}\big (v-{\widetilde{P}}_hv\big )=0, \quad P_e^{k-2}\big (\{v\}-{\widetilde{P}}_hv\big )=0\quad \forall ~e\in {\mathcal {E}}_h^i(K). \end{aligned}$$
(58)

For each \(e\in {\mathcal {E}}_h(K)\), there holds

$$\begin{aligned} \sum _{\delta \in \partial e}\big (v-{\widetilde{P}}_hv\big )^2(\delta )\lesssim&\sum _{\delta \in \partial e}\sum _{e^{\prime }\in \partial ^{-1}\delta }\big ([v]|_{e^{\prime }}\big )^2(\delta )=\sum _{\delta \in \partial e}\sum _{e^{\prime }\in \partial ^{-1}\delta }\big ([v-\beta ]|_{e^{\prime }}\big )^2(\delta ) \\ \lesssim&\sum _{\delta \in \partial e}\sum _{K^{\prime }\in \partial ^{-2}\delta }(v|_{K^{\prime }}-\beta )^2(\delta ). \end{aligned}$$

By (58), we have

$$\begin{aligned} \big \Vert P_e^{k-2}\big (v-{\widetilde{P}}_hv\big )\big \Vert _{0,e}^2\lesssim&\big \Vert P_e^{k-2}[v]\big \Vert _{0,e}^2=\big \Vert P_e^{k-2}[v-\chi ]\big \Vert _{0,e}^2 \\ \lesssim&\sum _{K^{\prime }\in \partial ^{-1}e}\big \Vert P_e^{k-2}(v|_{K^{\prime }}-\chi )\big \Vert _{0,e}^2. \end{aligned}$$

It follows from Lemma 3 that

$$\begin{aligned} \Vert v-{\widetilde{P}}_hv\Vert _{0,K}^2\lesssim&h_K^2\sum _{e\in {\mathcal {E}}_h(K)}\sum _{\delta \in \partial e}\big (v-{\widetilde{P}}_hv\big )^2(\delta ) + h_K\sum _{e\in {\mathcal {E}}_h(K)}\big \Vert P_e^{k-2}\big (v-{\widetilde{P}}_hv\big )\big \Vert _{0,e}^2 \\&+ \big \Vert P_K^{k-3}\big (v-{\widetilde{P}}_hv\big )\big \Vert _{0,K}^2. \end{aligned}$$

Now, the combination of last three inequalities and (58) leads to the required result readily. \(\square \)

Proof of Lemma 5

Let the set \(\partial ^{-2}\delta \) consist of elements \(K_1, K_2, \cdots , K_{\#(\partial ^{-2}\delta )}\). With \(\delta \) we associate a vertex bubble function given by

$$\begin{aligned} b_{\delta }:=\left\{ \begin{array}{ll} \prod \limits _{i=1}^{\#(\partial ^{-2}\delta )}\lambda _{K_i}&{} \text { in } \omega _{\delta }, \\ 0 &{}\text { in } {\varOmega }\backslash \omega _{\delta }, \end{array} \right. \end{aligned}$$

where \(\lambda _{K_i}\) is the barycentric coordinate of \(K_i\) associated with \(\delta \). It is evident that \(b_{\delta }(\delta )=1\) and

$$\begin{aligned}&\sum _{K\in \partial ^{-2}\delta }h_K^{-1}\Vert b_{\delta }^2\Vert _{0,K} + \sum _{K\in \partial ^{-2}\delta }h_K|b_{\delta }^2|_{2,K} + \sum _{e\in \partial ^{-1}\delta }h_e^{-1/2}\Vert b_{\delta }^2\Vert _{0,e} \nonumber \\&\quad + \sum _{e\in \partial ^{-1}\delta }h_e^{1/2}\Vert \partial _{{\varvec{n}}_e}(b_{\delta }^2)\Vert _{0,e}\lesssim 1. \end{aligned}$$
(59)

Let \(\psi _{\delta }:=b_{\delta }^2\sum \nolimits _{e\in \partial ^{-1}\delta }\sum \nolimits _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\in H_0^2(\omega _{\delta })\). By integration by parts and recalling the definition of \(Q_{{\varvec{n}}}(\varvec{\tau })\), it follows that

$$\begin{aligned}&\Big |\sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\Big |^2 = \sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\psi _{\delta } \\&\quad = \sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\Big (\int _e\partial _{{\varvec{t}}}M_{nt}(\varvec{\tau })\psi _{\delta }\,ds + \int _eM_{nt}(\varvec{\tau })\partial _{{\varvec{t}}}\psi _{\delta }\,ds\Big ) \\&\quad = \sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\Big (\int _eQ_{{\varvec{n}}}(\varvec{\tau })\psi _{\delta }\,ds - \int _{e}{\varvec{n}}\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,ds + \int _eM_{nt}(\varvec{\tau })\partial _{{\varvec{t}}}\psi _{\delta }\,ds\Big ) \\&\quad = \sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\int _eQ_{{\varvec{n}}}(\varvec{\tau })\psi _{\delta }\,ds \\&\qquad +\sum _{K\in \partial ^{-2}\delta }\Big (- \int _{\partial K}{\varvec{n}}\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,ds + \int _{\partial K}M_{nt}(\varvec{\tau })\partial _{{\varvec{t}}}\psi _{\delta }\,ds\Big ). \end{aligned}$$

On the other hand, by integration by parts again,

$$\begin{aligned} \int _{\partial K}{\varvec{n}}\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,ds=&\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,dx + \int _{K}(\varvec{\nabla }\cdot \varvec{\tau })\cdot \varvec{\nabla }\psi _{\delta }\,dx \\ =&\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,dx + \int _{K}\varvec{\tau }:{\mathcal {K}}(\psi _{\delta })\,dx \\&+ \int _{\partial K}M_{n}(\varvec{\tau })\partial _{{\varvec{n}}}\psi _{\delta }\,ds + \int _{\partial K}M_{nt}(\varvec{\tau })\partial _{{\varvec{t}}}\psi _{\delta }\,ds. \end{aligned}$$

Noting that \(\psi _{\delta }\in H_0^2(\omega _{\delta })\), we obtain from the last two equalities that

$$\begin{aligned}&\Big |\sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\Big |^2 \\&\quad = \sum _{e\in \partial ^{-1}\delta }\int _e[Q_{{\varvec{n}}_e}(\varvec{\tau })]\psi _{\delta }\,ds - \sum _{e\in \partial ^{-1}\delta }\int _{e}[M_n(\varvec{\tau })]\partial _{{\varvec{n}}_e}\psi _{\delta }\,ds \\&\qquad -\sum _{K\in \partial ^{-2}\delta }\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _{\delta }\,dx - \sum _{K\in \partial ^{-2}\delta }\int _{K}\varvec{\tau }:{\mathcal {K}}(\psi _{\delta })\,dx, \end{aligned}$$

which together with (16) and the Cauchy–Schwarz inequality implies

$$\begin{aligned}&\Big |\sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\Big |^2 \\&\quad \lesssim -\sum _{K\in \partial ^{-2}\delta }\int _{K}(f+\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau }))\psi _{\delta }\,dx + \sum _{K\in \partial ^{-2}\delta }\int _{K}(\varvec{\sigma }-\varvec{\tau }):{\mathcal {K}}(\psi _{\delta })\,dx \\&\qquad - \sum _{e\in \partial ^{-1}\delta }\int _{e}[M_n(\varvec{\tau })]\partial _{{\varvec{n}}_e}\psi _{\delta }\,ds +\sum _{e\in \partial ^{-1}\delta }\int _e[Q_{{\varvec{n}}_e}(\varvec{\tau })]\psi _{\delta }\,ds \\&\quad \lesssim \sum _{K\in \partial ^{-2}\delta }\left( \Vert f+\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\Vert _{0,K}\Vert \psi _{\delta }\Vert _{0,K} +\Vert \varvec{\sigma }-\varvec{\tau }\Vert _{0,K}|\psi _{\delta }|_{2,K}\right) \\&\qquad + \sum _{e\in \partial ^{-1}\delta }\left( \Vert [M_n(\varvec{\tau })]\Vert _{0,e}\Vert \partial _{{\varvec{n}}_e}\psi _{\delta }\Vert _{0,e} + \Vert [Q_{{\varvec{n}}_e}(\varvec{\tau })]\Vert _{0,e}\Vert \psi _{\delta }\Vert _{0,e}\right) . \end{aligned}$$

Thus by the definition of \(\psi _{\delta }\) and (59),

$$\begin{aligned}&\Big |\sum _{e\in \partial ^{-1}\delta }\sum _{K\in \partial ^{-1}e}\varepsilon (e,\delta )M_{nt_e}(\varvec{\tau })(\delta )\Big | \\&\quad \lesssim \sum _{K\in \partial ^{-2}\delta }\left( \Vert f+\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\Vert _{0,K}\Vert b_{\delta }^2\Vert _{0,K} +\Vert \varvec{\sigma }-\varvec{\tau }\Vert _{0,K}|b_{\delta }^2|_{2,K}\right) \\&\qquad + \sum _{e\in \partial ^{-1}\delta }\left( \Vert [M_n(\varvec{\tau })]\Vert _{0,e}\Vert \partial _{{\varvec{n}}_e}(b_{\delta }^2)\Vert _{0,e} + \Vert [Q_{{\varvec{n}}_e}(\varvec{\tau })]\Vert _{0,e}\Vert b_{\delta }^2\Vert _{0,e}\right) \\&\quad \lesssim \sum _{K\in \partial ^{-2}\delta }h_K^{-1}\left( h_K^{2}\Vert f+\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\Vert _{0,K} +\Vert \varvec{\sigma }-\varvec{\tau }\Vert _{0,K}\right) \\&\qquad + \sum _{e\in \partial ^{-1}\delta }h_e^{-1}\left( h_e^{1/2}\Vert [M_n(\varvec{\tau })]\Vert _{0,e} + h_e^{3/2}\Vert [Q_{{\varvec{n}}_e}(\varvec{\tau })]\Vert _{0,e}\right) . \end{aligned}$$

Finally, the estimate (20) is a direct consequence of the last inequality and (17)–(19). \(\square \)

Proof of Lemma 6

Let \(b_K:=\lambda _1\lambda _2\lambda _3\) and \(\psi _K:=(\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h))b_K^2\), where \(\lambda _i\)\((i=1,2,3)\) are the usual barycentric coordinates with respect to K. Then \(\psi _K\in H_0^2(K)\) and

$$\begin{aligned} \Vert \psi _K\Vert _{0,K}\eqsim \Vert \varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h)\Vert _{0,K}. \end{aligned}$$

Using integration by parts and (27), we know

$$\begin{aligned}&\int _K(\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h))\psi _K\,dx \\&\quad = -\int _K(\varvec{\nabla }\cdot \varvec{\tau }-\varvec{\nabla }(P_hu-{\widetilde{P}}_hu_h))\cdot \varvec{\nabla }\psi _K\,dx \\&\quad =-\int _K(\varvec{\nabla }\cdot (\varvec{\tau }-\widetilde{\varvec{\sigma }}))\cdot \varvec{\nabla }\psi _K\,dx =\int _K(\widetilde{\varvec{\sigma }}-\varvec{\tau }):{\mathcal {K}}(\psi _K)\,dx. \end{aligned}$$

Thus, we have from the scaling argument, the Cauchy–Schwarz inequality and the inverse inequality that

$$\begin{aligned}&\Vert \varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h)\Vert _{0,K}^2 \\&\quad \lesssim \int _K(\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h))\psi _K\,dx = \int _K(\widetilde{\varvec{\sigma }}-\varvec{\tau }):{\mathcal {K}}(\psi _K)\,dx \\&\quad \lesssim h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}\Vert \psi _K\Vert _{0,K}\lesssim h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}\Vert \varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h)\Vert _{0,K}. \end{aligned}$$

The proof is complete. \(\square \)

Proof of Lemma 7

Let \(K_1\) and \(K_2\) be two elements in \({\mathcal {T}}_h\) sharing the common edge e. With e, we associate an edge bubble function given by (cf. [28, 42])

$$\begin{aligned} b_e:=\left\{ \begin{array}{ll} \lambda _{K_1,1}\lambda _{K_1,2}\lambda _{K_2,1}\lambda _{K_2,2}&{} \text { in } \omega _e, \\ 0 &{}\text { in } {\varOmega }\backslash \omega _e, \end{array} \right. \end{aligned}$$

where \(\lambda _{K_1,i}\) and \(\lambda _{K_2,i}\) for \(i=1, 2\) are barycentric coordinates of \(K_1\) and \(K_2\) associated with two end points of e, respectively. Suppose the straight line edge e lying in is determined by the linear equation \({\varvec{n}}_e\cdot {\varvec{x}}+C=0\) where C is a constant. By direct manipulation, we readily have

$$\begin{aligned} \left| {\varvec{n}}_e\cdot {\varvec{x}}+C\right| \lesssim h_e \quad \text { on } \omega _e. \end{aligned}$$

Set \(J_{1,e}:=[M_n(\varvec{\tau })]|_e\). \(E_h(J_{1,e})\) is defined by extending the jump \(J_{1,e}\) to \(\omega _e\) constantly along the normal to e. Take \(\phi _e:=({\varvec{n}}_e\cdot {\varvec{x}}+C)b_e^2E_h(J_{1,e})\in H_0^2(\omega _e)\). It is easy to check that

$$\begin{aligned}&\phi _e=0, \quad \partial _{{\varvec{n}}_e}\phi _e=b_e^2E_h(J_{1,e})\partial _{{\varvec{n}}_e}({\varvec{n}}_e\cdot {\varvec{x}}+C)=b_e^2E_h(J_{1,e})=b_e^2J_{1,e} \quad \text { on } e, \end{aligned}$$
(60)
$$\begin{aligned}&\sum _{K\in \partial ^{-1}e}\Vert \phi _e\Vert _{0,K}\lesssim h_e\sum _{K\in \partial ^{-1}e}\Vert E_h(J_{1,e})\Vert _{0,K}\lesssim h_e^{3/2}\Vert J_{1,e}\Vert _{0,e}. \end{aligned}$$
(61)

According to standard scaling argument and (60),

$$\begin{aligned} \Vert J_{1,e}\Vert _{0,e}^2\lesssim&\int _eb_e^2J_{1,e}^2\,ds = \int _eJ_{1,e}\partial _{{\varvec{n}}_e}\phi _e\,ds = \int _e[M_n(\varvec{\tau })]\partial _{{\varvec{n}}_e}\phi _e\,ds \\ =&\sum _{K\in \partial ^{-1}e}\int _{\partial K}M_n(\varvec{\tau })\partial _{{\varvec{n}}}\phi _e\,ds =\sum _{K\in \partial ^{-1}e}\int _{\partial K} (\varvec{\tau }{\varvec{n}})\cdot \varvec{\varvec{\nabla }}\phi _e\,ds. \end{aligned}$$

Using integration by parts and (28), we can see that

$$\begin{aligned} \Vert J_{1,e}\Vert _{0,e}^2\lesssim&-\sum _{K\in \partial ^{-1}e}\int _K\varvec{\tau }:{\mathcal {K}}(\phi _e)\,dx + \sum _{K\in \partial ^{-1}e}\int _K(\varvec{\nabla }\cdot \varvec{\tau })\cdot \varvec{\nabla }\phi _e\,dx \\ \lesssim&\sum _{K\in \partial ^{-1}e}\int _K(\widetilde{\varvec{\sigma }}-\varvec{\tau }):{\mathcal {K}}(\phi _e)\,dx \\&+ \sum _{K\in \partial ^{-1}e}\int _K(\varvec{\nabla }\cdot \varvec{\tau }-\varvec{\nabla }(P_hu-{\widetilde{P}}_hu_h))\cdot \varvec{\nabla }\phi _e\,dx. \end{aligned}$$

Furthermore, using integration by parts and (60), we have from the above inequality that

$$\begin{aligned} \Vert J_{1,e}\Vert _{0,e}^2 \lesssim&\sum _{K\in \partial ^{-1}e}\int _K(\widetilde{\varvec{\sigma }}-\varvec{\tau }):{\mathcal {K}}(\phi _e)\,dx \\&-\sum _{K\in \partial ^{-1}e}\int _K(\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h))\phi _e\,dx. \end{aligned}$$

Therefore, by the Cauchy–Schwarz inequality, the inverse inequality, Lemma 6 and (61), we arrive at

$$\begin{aligned}&\Vert J_{1,e}\Vert _{0,e}^2 \\&\quad \lesssim \sum _{K\in \partial ^{-1}e}\big (\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}|\phi _e|_{2,K} + \Vert \varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h)\Vert _{0,K}\Vert \phi _e\Vert _{0,K} \big ) \\&\quad \lesssim \sum _{K\in \partial ^{-1}e}h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}\Vert \phi _e\Vert _{0,K} \lesssim h_e^{3/2}\Vert J_{1,e}\Vert _{0,e}\sum _{K\in \partial ^{-1}e}h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}, \end{aligned}$$

from which the required estimate follows readily. \(\square \)

Proof of Lemma 8

Let \(J_{2,e}:=[Q_{{\varvec{n}}_e}(\varvec{\tau })]|_e\). \(E_h(J_{2,e})\) is defined by extending the jump \(J_{2,e}\) to \(\omega _e\) constantly along the normal to e. Set \(\psi _e:=b_e^2E_h(J_{2,e})\in H_0^2(\omega _e)\). It is easy to check that

$$\begin{aligned} \Vert \psi _e\Vert _{0,\omega _e}\lesssim h_e^{1/2}\Vert J_{2,e}\Vert _{0,e}. \end{aligned}$$
(62)

By the standard scaling argument and integration by parts, it follows that

$$\begin{aligned} \Vert J_{2,e}\Vert _{0,e}^2\lesssim&\int _eJ_{2,e}\psi _e\,ds=\int _e[Q_{{\varvec{n}}_e}(\varvec{\tau })]\psi _e\,ds =\sum _{K\in \partial ^{-1}e}\int _{\partial K}Q_{{\varvec{n}}}(\varvec{\tau })\psi _e\,ds \\ =&\sum _{K\in \partial ^{-1}e}\int _{\partial K}{\varvec{n}}\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _e\,ds + \sum _{K\in \partial ^{-1}e}\int _{\partial K}\partial _{{\varvec{t}}}M_{nt}(\varvec{\tau })\psi _e\,ds \\ =&\sum _{K\in \partial ^{-1}e}\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _e\,dx + \sum _{K\in \partial ^{-1}e}\int _{K}(\varvec{\nabla }\cdot \varvec{\tau })\cdot \varvec{\nabla }\psi _e\,dx \\&-\sum _{K\in \partial ^{-1}e}\int _{\partial K}M_{nt}(\varvec{\tau })\partial _{{\varvec{t}}}\psi _e\,ds. \end{aligned}$$

Using integration by parts again and (28) with \(v=\psi _e\) gives rise to

$$\begin{aligned} \Vert J_{2,e}\Vert _{0,e}^2\lesssim&\sum _{K\in \partial ^{-1}e}\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _e\,dx + \sum _{K\in \partial ^{-1}e}\int _{K}\varvec{\tau }:{\mathcal {K}}(\psi _e)\,dx \\&+\sum _{K\in \partial ^{-1}e}\int _{\partial K}M_{n}(\varvec{\tau })\partial _{{\varvec{n}}}\psi _e\,ds \\ \lesssim&\sum _{K\in \partial ^{-1}e}\int _{K}\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })\psi _e\,dx + \sum _{K\in \partial ^{-1}e}\int _{K}\varvec{\nabla }(P_hu-{\widetilde{P}}_hu_h)\cdot \varvec{\nabla }\psi _e\,dx \\&- \sum _{K\in \partial ^{-1}e}\int _{K}(\widetilde{\varvec{\sigma }}-\varvec{\tau }):{\mathcal {K}}(\psi _e)\,dx + \int _{e}[M_n(\varvec{\tau })]\partial _{{\varvec{n}}_e}\psi _e\,ds. \end{aligned}$$

By integration by parts and observing the fact that \(\psi _e\in H_0^2(\omega _e)\) and \(\widetilde{\varvec{\sigma }}\in {\varvec{H}}^{1}({\varOmega }, {\mathbb {S}})\), we know

$$\begin{aligned}&\Vert J_{2,e}\Vert _{0,e}^2 \\&\quad \lesssim \sum _{K\in \partial ^{-1}e}\int _{K}(\varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h))\psi _e\,dx + \int _{e}[\partial _{{\varvec{n}}_e}(P_hu-{\widetilde{P}}_hu_h)]\psi _e\,ds \\&\qquad +\sum _{K\in \partial ^{-1}e}\int _{K}(\widetilde{\varvec{\sigma }}-\varvec{\tau }):\varvec{\nabla }^2\psi _e\,dx +\int _{e}[M_n(\varvec{\tau })]\partial _{{\varvec{n}}_e}\psi _e\,ds. \end{aligned}$$

This, along with the Cauchy–Schwarz inequality, the inverse inequality, Lemmas 6-7 and (62), leads to

$$\begin{aligned}&\Vert J_{2,e}\Vert _{0,e}^2 \\&\quad \lesssim \sum _{K\in \partial ^{-1}e}\big (\Vert \varvec{\nabla }\cdot (\varvec{\nabla }\cdot \varvec{\tau })-{\varDelta }(P_hu-{\widetilde{P}}_hu_h)\Vert _{0,K}\Vert \psi _e\Vert _{0,K} +\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}|\psi _e|_{2,K}\big ) \\&\qquad + \Vert [M_n(\varvec{\tau })]\Vert _{0,e}\Vert \partial _{{\varvec{n}}_e}\psi _e\Vert _{0,e} + \Vert [\partial _{{\varvec{n}}_e}(P_hu-{\widetilde{P}}_hu_h)]\Vert _{0,e}\Vert \psi _e\Vert _{0,e} \\&\quad \lesssim \sum _{K\in \partial ^{-1}e}h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}\Vert \psi _e\Vert _{0,K} + h_e^{-3/2}\Vert [M_n(\varvec{\tau })]\Vert _{0,e}\Vert \psi _e\Vert _{0,\omega _e} \\&\qquad + h_e^{-1/2}\Vert [\partial _{{\varvec{n}}_e}(P_hu-{\widetilde{P}}_hu_h)]\Vert _{0,e}\Vert \psi _e\Vert _{0,\omega _e} \\&\quad \lesssim \Vert \psi _e\Vert _{0,\omega _e}\sum _{K\in \partial ^{-1}e}\left( h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}+h_K^{-1}|P_hu-{\widetilde{P}}_hu_h|_{1,K}\right) \\&\quad \lesssim h_e^{1/2}\Vert J_{2,e}\Vert _{0,e}\sum _{K\in \partial ^{-1}e}\left( h_K^{-2}\Vert \widetilde{\varvec{\sigma }}-\varvec{\tau }\Vert _{0,K}+h_K^{-1}|P_hu-{\widetilde{P}}_hu_h|_{1,K}\right) , \end{aligned}$$

as required. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Huang, X. A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates. J Sci Comput 78, 290–320 (2019). https://doi.org/10.1007/s10915-018-0780-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0780-0

Keywords