Skip to main content
Log in

Discontinuous Galerkin Methods with Optimal \(L^2\) Accuracy for One Dimensional Linear PDEs with High Order Spatial Derivatives

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we formulate and analyze discontinuous Galerkin (DG) methods to solve several partial differential equations (PDEs) with high order spatial derivatives, including the heat equation, a third order wave equation, a fourth order equation and the linear Schrödinger equation in one dimension. Following the idea of local DG methods, we first rewrite each PDE into its first order form and then apply a general DG formulation. The numerical fluxes are introduced as linear combinations of average values of fluxes, and jumps of the solution as well as the auxiliary variables at cell interfaces. The main focus of the present work is to identify a sub-family of the numerical fluxes by choosing the coefficients in the linear combinations, so the solution and some auxiliary variables of the proposed DG methods are optimally accurate in the \(L^2\) norm. In our analysis, one key component is to design some special projection operator(s), tailored for each choice of numerical fluxes in the sub-family, to eliminate those terms at cell interfaces that would otherwise contribute to the sub-optimality of the error estimates. Our theoretical findings are validated by a set of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 272(1220), 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bialynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20(3–4), 539 (1979)

    Article  MATH  Google Scholar 

  5. Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85(302), 2715–2742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(L^{2}\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337–361 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cowan, S., Enns, R., Rangnekar, S., Sanghera, S.S.: Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Can. J. Phys. 64(3), 311–315 (1986)

    Article  Google Scholar 

  19. Dong, B.: Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2–3), 712–735 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences, pp. 207–216. Springer, Berlin, Heidelberg (1976)

    Chapter  Google Scholar 

  22. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8(2), 252–283 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)

    MATH  Google Scholar 

  25. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Nume. Anal. 47(1), 675–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  27. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical solutions of partial differential equations, pp. 149–201. Birkhäuser, Basel (2009)

    Google Scholar 

  28. Xia, Y., Xu, Y., Shu, C.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Seri. B 8(3), 677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Y. Cheng: Research is supported by NSF Grants DMS-1453661 and DMS-1720023. F. Li: Research is supported in part by NSF Grant DMS-1719942. Y. Xu: Research is supported by NSFC Grant No.11722112 and 91630207.

Appendices

A The Proof of Theorem 4.3

In this appendix, we prove the \(L^2\) stability of the DG scheme (4.6)–(4.7) with the numerical fluxes (4.5) and \(\alpha =\frac{1}{2},\beta _1=\beta _2=0\), namely

$$\begin{aligned} F_p =p_h^+, \quad F_q = q_h^+, \quad F_u=u_h^-. \end{aligned}$$
(A.1)

Five energy equations will be derived first.

\(\bullet \)The first energy equation. With \(\alpha =\frac{1}{2},\beta _1=\beta _2=0\), the first energy equation (4.9) becomes

$$\begin{aligned} 0=B(u_h,p_h,q_h;u_h,q_h,-p_h)=\frac{1}{2}\frac{d}{dt}\int _{\Omega }u_h^2dx +\frac{1}{2}\sum \limits _{j}[q_h]^2_{j-\frac{1}{2}}. \end{aligned}$$
(A.2)

\(\bullet \)The second energy equation. We take the test functions \(v=-\frac{1}{2}(q_h)_t\), \(w=\frac{1}{2}p_h\) and \(z=0\) in (4.10), use the definition of \(F_p\), \(F_q\) and \(F_u\) in (A.1), and obtain

$$\begin{aligned} 0&=B(u_h,(p_h)_t,(q_h)_t;-\frac{1}{2}(q_h)_t,\frac{1}{2}p_h,0)\nonumber \\&=-\frac{1}{2}\int _{\Omega }(u_h)_t(q_h)_t dx + \frac{1}{2}\sum \limits _{j}\left( \int _{I_j}p_h (q_h)_{tx}dx+(F_p[(q_h)_t])_{j-\frac{1}{2}}\right) \nonumber \\&\quad +\frac{1}{2}\int _{\Omega }(p_h)_t p_h dx + \frac{1}{2}\sum \limits _{j}\left( \int _{I_j}(q_h)_t(p_h)_xdx+((F_q)_t[p_h])_{j-\frac{1}{2}}\right) \nonumber \\&=\frac{1}{2}\int _{\Omega }(-(u_h)_t(q_h)_t+(p_h)_tp_h)dx+\frac{1}{2}\sum \limits _{j}\left( [p_h][(q_h)_t]\right) _{j-\frac{1}{2}}. \end{aligned}$$
(A.3)

\(\bullet \)The third energy equation. With \(\alpha =\frac{1}{2},\beta _1=\beta _2=0\), (4.14) becomes

$$\begin{aligned} 0=&B((u_h)_t,(p_h)_t,(q_h)_t;(u_h)_t,(q_h)_t,-(p_h)_t)=\frac{1}{2}\frac{d}{dt}\int _{\Omega }(u_h)_t^2dx +\frac{1}{2}\sum \limits _{j}[(q_h)_t]^2_{j-\frac{1}{2}}. \end{aligned}$$
(A.4)

\(\bullet \)The fourth energy equation. Here we take the test functions \(v=-p_h\), \(w=(u_h)_t\) and \(z=q_h\) in (4.15), use the definition of \(F_p\), \(F_q\) and \(F_u\) in (A.1), and obtain

$$\begin{aligned} 0&=B\left( u_h,p_h,\left( q_h\right) _t;-p_h,\left( u_h\right) _t,q_h\right) \nonumber \\&=-\int _{\Omega }\left( u_h\right) _t p_h dx +\sum \limits _{j}\left( \int _{I_j}p_h\left( p_h\right) _{x}dx+\left( F_p[p_h]\right) _{j-\frac{1}{2}}\right) \nonumber \\&\quad +\int _{\Omega }p_h \left( u_h\right) _t dx + \sum \limits _{j}\left( \int _{I_j}q_h\left( u_h\right) _{tx}dx+\left( F_q[\left( u_h\right) _t]\right) _{j-\frac{1}{2}}\right) \nonumber \\&\quad + \int _{\Omega }\left( q_h\right) _tq_h dx + \sum \limits _{j}\left( \int _{I_j}\left( u_h\right) _t \left( q_h\right) _xdx+\left( \left( F_u\right) _t[q_h]\right) _{j-\frac{1}{2}}\right) \nonumber \\&=\frac{1}{2}\frac{d}{dt} \int _{\Omega }\left( q_h\right) ^2 dx+\frac{1}{2}\sum \limits _{j}[p_h]^2_{j-\frac{1}{2}}. \end{aligned}$$
(A.5)

\(\bullet \)The fifth energy equation. We take the time derivative of (4.15) and get

$$\begin{aligned} B((u_h)_t,(p_h)_t,(q_h)_{tt};v,w,z)=0, \quad \forall v,w,z\in {\mathcal {V}}_h^k. \end{aligned}$$
(A.6)

With the test functions in (A.6) taken as \(v=-(p_h)_t\), \(w=(u_h)_{tt}\) and \(z=(q_h)_t\), using the definition of \(F_p\), \(F_q\) and \(F_u\) in (A.1), we have

$$\begin{aligned} 0=B((u_h)_t,(p_h)_t,(q_h)_{tt};-(p_h)_t,(u_h)_{tt},(q_h)_t)=\int _{\Omega }(q_h)_{tt}(q_h)_t dx+\frac{1}{2}\sum \limits _{j}[(p_h)_t]^2_{j-\frac{1}{2}}. \end{aligned}$$
(A.7)

\(\bullet \)Proof of Theorem4.3

Proof

We sum up the energy equations (A.2)–(A.5) and (A.7), and get

$$\begin{aligned} 0&=\frac{1}{2}\frac{d}{dt}\left( \Vert u_h\Vert ^2_\Omega +\frac{1}{2}\Vert p_h\Vert ^2_\Omega +\Vert (u_h)_t\Vert ^2_\Omega +\Vert q_h\Vert ^2_\Omega +\Vert (q_h)_t\Vert ^2_\Omega \right) -\frac{1}{2}((q_h)_t,(u_h)_t)\nonumber \\&\quad +\frac{1}{2}\sum \limits _{j}\left( [q_h]^2+[(q_h)_t]^2+[(p_h)_t]^2+[p_h]^2+[p_h][(q_h)_t]\right) _{j-\frac{1}{2}}. \end{aligned}$$
(A.8)

Thus, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\left( \Vert u_h\Vert ^2_\Omega +\frac{1}{2}\Vert p_h\Vert ^2_\Omega +\Vert (u_h)_t\Vert ^2_\Omega +\Vert q_h\Vert ^2_\Omega +\Vert (q_h)_t\Vert ^2_\Omega \right) \le \frac{1}{4}(\Vert (q_h)_t\Vert ^2_\Omega +\Vert (u_h)_t\Vert ^2_\Omega ). \end{aligned}$$
(A.9)

We integrate (A.9) with respect to time over [0, T], and obtain

$$\begin{aligned}&\Vert u_h(T)\Vert ^2_\Omega +\frac{1}{2}\Vert p_h(T)\Vert ^2_\Omega +\Vert (u_h)_t(T)\Vert ^2_\Omega +\Vert q_h(T)\Vert ^2_\Omega +\Vert (q_h)_t(T)\Vert ^2_\Omega \nonumber \\&\quad \le \frac{1}{2}\int _0^T(\Vert (q_h)_t(t) \Vert ^2_\Omega +\Vert (u_h)_t(t) \Vert ^2_\Omega )dt\nonumber \\&\qquad +\left( \Vert u_h(0)\Vert ^2_\Omega +\frac{1}{2}\Vert p_h(0)\Vert ^2_\Omega +\Vert (u_h)_t(0)\Vert ^2_\Omega +\Vert q_h(0)\Vert ^2_\Omega +\Vert (q_h)_t(0)\Vert ^2_\Omega \right) . \end{aligned}$$
(A.10)

From the third energy equation (A.4) and the fifth energy equation (A.7), we have

$$\begin{aligned} \Vert (u_h)_t(t)\Vert ^2_\Omega \le \Vert (u_h)_t(0)\Vert ^2_\Omega , \quad \Vert (q_h)_t(t)\Vert ^2_\Omega \le \Vert (q_h)_t(0)\Vert ^2_\Omega , \quad \forall t\ge 0. \end{aligned}$$
(A.11)

Therefore, we can obtain the \(L^2\) stability in Theorem 4.3. \(\square \)

B The Derivation of the Conditions (4.18)

In this appendix, we will give the derivation of the conditions (4.18) that are to ensure the matrices \(S_1\) and \(S_2\) in (4.22) to be positive semi-definite. For this, we use the following sufficient and necessary condition for an \(n\times n \) matrix to be positive semi-definite: all the principal minors\(D_k\)are nonnegative, \(k=1, \ldots n\). Here, \(D_k\) is formed by deleting any\(n-k\) rows and the corresponding columns. Additionally, we require the relation \(\alpha ^2+\beta _1\beta _2=\frac{1}{4}\), which helps with simplifying the conditions and is also needed for optimal accuracy.

For the matrix \(S_1\), the first principal minors are

$$\begin{aligned} D_{1,1}=-\beta _1,\;D_{1,2}=-\beta _2,\;D_{1,3}=\frac{1}{2}; \end{aligned}$$
(B.1)

the second principal minors are

$$\begin{aligned} D_{2,1}=\begin{vmatrix} -\beta _2&\frac{\alpha +0.5}{2} \\ \frac{\alpha +0.5}{2}&\frac{1}{2} \end{vmatrix} ,\; D_{2,2}=\begin{vmatrix} -\beta _1&\frac{\beta _1}{2} \\ \frac{\beta _1}{2}&\frac{1}{2} \end{vmatrix} ,\; D_{2,3}=\begin{vmatrix} -\beta _1&0 \\ 0&-\beta _2 \end{vmatrix} ; \end{aligned}$$
(B.2)

and the third principal minor is

$$\begin{aligned} D_3=|S_1|=\frac{1}{2}\beta _1\beta _2+\frac{1}{4}\beta _1^2\beta _2+\frac{1}{4}\beta _1{\left( \alpha +\frac{1}{2}\right) ^2}. \end{aligned}$$
(B.3)

Let the first principal minors be nonnegative, we have \(\beta _1\le 0\) and \(\beta _2\le 0\). From the second principal minors being nonnegative, we obtain

$$\begin{aligned} 2\beta _2+\left( \alpha +\frac{1}{2}\right) ^2\le 0,\;\;\beta _1(2+\beta _1)\le 0,\; \;\beta _1\beta _2\ge 0. \end{aligned}$$
(B.4)

Let the third principal minor \(D_3\) be nonnegative, with \(\beta _1\le 0\) and the assumption \(\alpha ^2+\beta _1\beta _2=\frac{1}{4}\), we get

$$\begin{aligned} 2\beta _2+\beta _1\beta _2+(\alpha +\frac{1}{2})^2 =2\beta _2+\alpha +\frac{1}{2}\le 0. \end{aligned}$$
(B.5)

We observe that, with \(\beta _1\beta _2\ge 0\), the inequality (B.5) will automatically ensure the first inequality in (B.4). Combining all we have so far, the following conditions are derived to ensure \(S_1\) be positive semi-definite

$$\begin{aligned} -2\le \beta _1\le 0,\;\;\beta _2\le 0,\;\;2\beta _2+\alpha \le -\frac{1}{2},\;\;\alpha ^2+\beta _1\beta _2=\frac{1}{4}. \end{aligned}$$
(B.6)
Fig. 1
figure 1

The region of \(\beta _1,\beta _2\) in the condition (4.18) for the stability. Left: \(\alpha =-\sqrt{\frac{1}{4}-\beta _1\beta _2}\); Right: \(\alpha =-\frac{1}{4}\)

For the matrix \(S_2\), we follow the similar analysis as for \(S_1\). By requiring all the first and the second principal minors being nonnegative, we get

$$\begin{aligned}&\beta _1+\alpha \le 0, \quad \beta _2\le 0, \end{aligned}$$
(B.7)
$$\begin{aligned}&8(\beta _1+\alpha )+\left( \frac{1}{2}-\alpha \right) ^2\le 0,\; \; \beta _2(8+\beta _2)\le 0,\; \;(\alpha +\beta _1)\beta _2-\frac{1}{4}\beta _2^2\ge 0, \end{aligned}$$
(B.8)

Let the third order principal minor of \(S_2\) be nonnegative, also with \(\beta _2\ge 0\), we obtain

$$\begin{aligned}&8(\beta _1+\alpha )+\left( \frac{1}{2}-\alpha \right) ^2+\beta _2\left( \frac{1}{2}-\alpha \right) +\beta _2(\beta _1+\alpha )-2\beta _2\nonumber \\&\quad =8(\beta _1+\alpha )+\left( \frac{1}{2}-\alpha \right) ^2+\beta _2(\beta _1-\frac{3}{2}) \le 0. \end{aligned}$$
(B.9)

Using \(\beta _2\le 0\) and assuming \(\beta _1\le 0\), one can see that (B.9) implies the first inequality in (B.8), which on the other hand ensures the first inequality in (B.7). Combining (B.7)–(B.9) with \(\alpha ^2+\beta _1\beta _2=\frac{1}{4}\), we have the conditions for \(S_2\) as

$$\begin{aligned} \alpha ^2+\beta _1\beta _2=\frac{1}{4},\;\beta _1\le 0,\;-8\le \beta _2\le 0,\;4(\beta _1+\alpha )\le \beta _2,\;8\beta _1+7\alpha -\frac{3}{2}\beta _2\le -\frac{1}{2}. \end{aligned}$$
(B.10)

Finally, we reach the conditions in (4.18) by putting (B.6) and (B.10) together. To get some idea about these conditions in (4.18), we present two plots in Fig. 1. In the left figure, we plot those pairs \((\beta _1,\beta _2)\) such that with the respective \(\alpha =-\sqrt{\frac{1}{4}-\beta _1\beta _2}\), the conditions in (4.18) are all satisfied. In the right figure, we fix \(\alpha =-\frac{1}{4}\), and plot \((\beta _1,\beta _2)\) satisfying the conditions in (4.18). Note that such \((\beta _1,\beta _2)\) form part of the parabola: \(\beta _1\beta _2=\frac{1}{4}-\alpha ^2=\frac{3}{16}\), see the solid line in red.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, P., Cheng, Y., Li, F. et al. Discontinuous Galerkin Methods with Optimal \(L^2\) Accuracy for One Dimensional Linear PDEs with High Order Spatial Derivatives. J Sci Comput 78, 816–863 (2019). https://doi.org/10.1007/s10915-018-0788-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0788-5

Keywords

Navigation