Skip to main content
Log in

Non-conforming Harmonic Virtual Element Method: \(h\)- and \(p\)-Versions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the \(h\)- and \(p\)-versions of non-conforming harmonic virtual element methods (VEM) for the approximation of the Dirichlet–Laplace problem on a 2D polygonal domain, providing quasi-optimal error bounds. Harmonic VEM do not make use of internal degrees of freedom. This leads to a faster convergence, in terms of the number of degrees of freedom, as compared to standard VEM. Importantly, the technical tools used in our \(p\)-analysis can be employed as well in the analysis of more general non-conforming finite element methods and VEM. The theoretical results are validated in a series of numerical experiments. The hp-version of the method is numerically tested, demonstrating exponential convergence with rate given by the square root of the number of degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aghili, J., Di Pietro, D., Ruffini, B.: A \(hp\)-hybrid high-order method for variable diffusion on general meshes. Comput. Methods Appl. Math. 17(3), 359–376 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \(\cal{C} ^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Mascotto, L., Verani, M.: A multigrid algorithm for the \(p\)-version of the virtual element method. ESAIM Math. Model. Numer. Anal. 52(1), 337–364 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Axler, S., Bourdon, P., Wade, R.: Harmonic Function Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Ayuso, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Guo, B.: The \(hp\) version of the finite element method. Comput. Mech. 1(1), 21–41 (1986)

    MATH  Google Scholar 

  9. Babuška, I., Guo, B.Q.: Regularity of the solution of elliptic problems with piecewise analytic data. Part I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19(1), 172–203 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuška, I., Guo, B.Q.: The \(hp\) version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal. 25(4), 837–861 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Babuška, I., Melenk, J.M.: Approximation with harmonic and generalized harmonic polynomials in the partition of unity method. Comput. Assist. Methods Eng. Sci. 4, 607–632 (1997)

    MATH  Google Scholar 

  12. Bank, R.E., Parsania, A., Sauter, S.: Saturation estimates for \(hp\)-finite element methods. Comput. Vis. Sci. 16(5), 195–217 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Beirão da Veiga, L., Chernov, A., Mascotto, L., Russo, A.: Basic principles of \(hp\) virtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26(8), 1567–1598 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Beirão da Veiga, L., Chernov, A., Mascotto, L., Russo, A.: Exponential convergence of the \(hp\) virtual element method with corner singularity. Numer. Math. 138(3), 581–613 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems. Springer, Berlin (2014)

    MATH  Google Scholar 

  20. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Beirão da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beirão da Veiga, L., Russo, A., Vacca, G.: The virtual element method with curved edges. arxiv:1711.04306, (2017)

  24. Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bernardi, C., Fiétier, N., Owens, R.G.: An error indicator for mortar element solutions to the Stokes problem. IMA J. Numer. Anal. 21(4), 857–886 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43(1), 53–80 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bertoluzza, S., Pennacchio, M., Prada, D.: BDDC and FETI-DP for the virtual element method. Calcolo 54(4), 1565–1593 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Brenner, S.C., Guan, Q., Sung, L.Y.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)

    Article  MathSciNet  Google Scholar 

  30. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods for advection–diffusion–reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50(3), 699–725 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Cangiani, A., Dong, Z., Georgoulis, E .H., Houston, P.: \(hp\)-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer, Cham (2017)

    MATH  Google Scholar 

  32. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cangiani, A., Gyrya, V., Manzini, G.: The non-conforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Chernov, A.: Optimal convergence estimates for the trace of the polynomial \({L}^2\)-projection operator on a simplex. Math. Comput. 81(278), 765–787 (2012)

    MATH  Google Scholar 

  36. Chernov, A., Mascotto, L.: The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry038

  37. Ciarlet, P.G., Ciarlet, P., Sauter, S.A., Simian, C.: Intrinsic finite element methods for the computation of fluxes for Poisson’s equation. Numer. Math. 132(3), 433–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math. Appl. 75(9), 3379–3401 (2018)

    Article  MathSciNet  Google Scholar 

  41. Di Pietro, D.A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353(1), 31–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gain, A.L., Paulino, G.H., Leonardo, S.D., Menezes, I.F.M.: Topology optimization using polytopes. Comput. Methods Appl. Mech. Eng. 293, 411–430 (2015)

    Article  MathSciNet  Google Scholar 

  43. Gardini, F., Vacca, G.: Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drx063

    Article  MathSciNet  Google Scholar 

  44. Grisvard, P.: Elliptic problems in nonsmooth domains. SIAM 69 (2011)

  45. Hiptmair, R., Moiola, A., Perugia, I., Schwab, C.: Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz \(hp\)-dGFEM. ESAIM Math. Model. Numer. Anal. 48(3), 727–752 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Li, F.: On the negative-order norm accuracy of a local-structure-preserving LDG method. J. Sci. Comput. 51(1), 213–223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, F., Shu, C.-W.: A local-structure-preserving local discontinuous Galerkin method for the Laplace equation. Methods Appl. Anal. 13(2), 215 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Mascotto, L.: Ill-conditioning in the virtual element method: stabilizations and bases. Numer. Methods Partial Differ. Equ. 34(4), 1258–1281 (2018)

    Article  MathSciNet  Google Scholar 

  49. Mascotto, L., Perugia, I., Pichler, A.: A nonconforming Trefftz virtual element method for the Helmholtz problem. arxiv:1805.05634 (2018)

  50. Melenk, J.M.: Operator adapted spectral element methods I: harmonic and generalized harmonic polynomials. Numer. Math. 84(1), 35–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Melenk, M.: On Generalized Finite Element Methods. PhD thesis, University of Maryland (1995)

  52. Moiola, A.: Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis (2011)

  53. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(08), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Perugia, I., Pietra, P., Russo, A.: A plane wave virtual element method for the Helmholtz problem. ESAIM Math. Model. Numer. Anal. 50(3), 783–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rjasanow, S., Weißer, S.: Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50(5), 2357–2378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schwab, C.: \(p\)- and \(hp\)- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors have been funded by the Austrian Science Fund (FWF) through the projects P 29197-N32 and F 65. They are very grateful to the anonymous referees for their valuable and constructive comments, which have contributed to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Perugia.

Appendix A: Details on the Implementation

Appendix A: Details on the Implementation

In this section, we discuss some practical aspects concerning the implementation of the non-conforming harmonic VEM in 2D. We employ henceforth the notation of [16]. It is worth to underline that we present herein only the case with uniform degree of accuracy; the implementation of the \(hp\) version is dealt with similarly. As a first step, we begin by fixing the notation for the various bases instrumental for the construction of the method.

Basis of \(\mathbb P_{p-1}(e)\) for a given \(e\in \mathcal {E}^K\). Using the same notation as in (12), we denote the basis of \(\mathbb P_{p-1}(e)\), \(e\in \mathcal E^K\), by \(\{ m_{r}^e\}_{r=0,\ldots ,p-1}\). The choice we make is

$$\begin{aligned} m_{r}^e(\mathbf x):=\mathbb L_{r}\left( \phi _e^{-1}(\mathbf x) \right) \quad \forall r=0,\dots ,p-1, \end{aligned}$$
(63)

where \(\phi _e: [-1,1] \rightarrow e\) is the linear transformation mapping the interval \([-1,1]\) to the edge \(e\), and \(\mathbb L_{r}\) is the Legendre polynomial of degree r over \([-1,1]\). We recall, see e.g. [56], for future use the orthogonality property

$$\begin{aligned} \left( m_r^e,m_s^e\right) _{0,e} = \frac{h_e}{2} \int _{-1}^{1} \mathbb L_r(t) \mathbb L_s(t) \, \text {d}t = \frac{h_e}{2r+1} \delta _{rs} \quad \forall r,s=0,\dots ,p-1, \end{aligned}$$
(64)

where \(\delta _{rs}\) is the Kronecker delta (1 if \(r=s\), 0 otherwise).

Basis of \(\mathbb H_p(K)\) for a given \(K\in \mathcal T_n\). We denote the basis of the space of harmonic polynomials \(\mathbb H_p(K)\) by \(\{ q_\alpha ^\Delta \}_{\alpha =1,\ldots ,n_p^\Delta }\), where \(n_p^\Delta :=\dim \mathbb H_p(K) = 2p+1\). The choice we make for this basis is

$$\begin{aligned} \begin{aligned} q_1^\Delta (\mathbf x)&= 1;\\ q_{2l}^\Delta (\mathbf x)&= \sum _{k=1, \, k \text { odd }}^{l} (-1)^{\frac{k-1}{2}} \left( {\begin{array}{c}l\\ k\end{array}}\right) \left( \frac{x-x_K}{h_K} \right) ^{l-k} \left( \frac{y-y_K}{h_K} \right) ^{k} \quad \forall l=1,\dots ,p; \\ q_{2l+1}^\Delta (\mathbf x)&= \sum _{k=0, \, k \text { even }}^{l} (-1)^{\frac{k}{2}} \left( {\begin{array}{c}l\\ k\end{array}}\right) \left( \frac{x-x_K}{h_K} \right) ^{l-k} \left( \frac{y-y_K}{h_K} \right) ^{k} \quad \forall l=1,\dots ,p.\\ \end{aligned} \end{aligned}$$

The fact that this is actually a basis for \(\mathbb H_p(K)\) is proven, e.g., in [6, Theorem 5.24].

Basis for \(V^\Delta (K)\) for a given \(K\in \mathcal T_n\). For this local VE space introduced in (11), we employ the canonical basis \(\left\{ \varphi _{j,r} \right\} _{\begin{array}{c} j=1,\ldots , N_K\\ r=0,\ldots ,p-1 \end{array}}\) defined though (13), where we also recall that \(N_K\) denotes the number of edges of K.

In the following, we derive the matrix representation of the local discrete bilinear form introduced in (23). We begin with the computation of the matrix representation of the projector \(\Pi ^{\nabla ,K}_p\) acting from \(V(K)\) to \(\mathbb H_p(K)\) and defined in (15). To this purpose, given any basis function \(\varphi _{j,r} \in V^\Delta (K)\), \(j=1,\dots ,N_K\), \(r=0,\dots ,p-1\), we expand \(\Pi ^{\nabla ,K}_p\varphi _{j,r}\) in terms of basis \(\{ q_\alpha ^\Delta \}_{\alpha =1,\ldots ,n_p^\Delta }\) of \(\mathbb H_p(K)\), i.e.,

$$\begin{aligned} \Pi ^{\nabla ,K}_p\varphi _{j,r} = \sum _{\alpha =1}^{n_p^\Delta } s_\alpha ^{(j,r)} q_\alpha ^\Delta . \end{aligned}$$
(65)

Using (15) and testing (65) with functions \(q_\beta ^\Delta \), \(\beta =1,\dots ,n_p^\Delta \), we get that the coefficients \(s_{\alpha }^{(j,r)}\) can be computed by solving for \(\varvec{s}^{(j,r)}:=[s_1^{(j,r)},\ldots , s_{n_p^\Delta }^{(j,r)}]^T\) the \(n_p^\Delta \times n_p^\Delta \) algebraic linear system

$$\begin{aligned} \varvec{G}\varvec{s}^{(j,r)}=\varvec{b}^{(j,r)}, \end{aligned}$$

where

$$\begin{aligned}&\varvec{G}= \begin{bmatrix} \left( q_1^\Delta ,1\right) _{0,\partial K}&\quad \left( q_2^\Delta ,1\right) _{0,\partial K}&\quad \cdots&\quad \left( q_{n_p^\Delta }^\Delta ,1\right) _{0,\partial K} \\ 0&\quad \left( \nabla q_2^\Delta ,\nabla q_2^\Delta \right) _{0,K}&\quad \cdots&\quad \left( \nabla q_{n_p^\Delta }^\Delta ,\nabla q_2^\Delta \right) _{0,K} \\ \vdots&\quad \vdots&\quad \ddots&\quad \vdots \\ 0&\quad \left( \nabla q_{n_p^\Delta }^\Delta ,\nabla q_2^\Delta \right) _{0,K}&\quad \cdots&\quad \left( \nabla q_{n_p^\Delta }^\Delta ,\nabla q_{n_p^\Delta }^\Delta \right) _{0,K} \end{bmatrix}, \nonumber \\&\quad \varvec{b}^{(j,r)}= \begin{bmatrix} \left( \varphi _{j,r},1\right) _{0,\partial K} \\ \left( \nabla \varphi _{j,r},\nabla q_2^\Delta \right) _{0,K} \\ \vdots \\ \left( \nabla \varphi _{j,r},\nabla q_{n_p^\Delta }^\Delta \right) _{0,K} \end{bmatrix}. \end{aligned}$$

Collecting all the \(N_K p\) (column) vectors \(\varvec{b}^{(j,r)}\) in a matrix \(\varvec{B}\in \mathbb R^{n_p^\Delta \times N_K p}\), namely, setting \(\varvec{B}:=[\varvec{b}^{(1,1)},\dots ,\varvec{b}^{(N_K,p)}]\), the matrix representation \(\varvec{\Pi }_*\) of the projector \(\Pi ^{\nabla ,K}_p\) acting from \(V^\Delta (K)\) to \(\mathbb H_p(K)\) is given by

$$\begin{aligned} \varvec{\Pi }_*= \varvec{G}^{-1} \varvec{B} \in \mathbb R^{n_p^\Delta \times N_K p}. \end{aligned}$$

Subsequently, we define

$$\begin{aligned} \varvec{D}:=\begin{bmatrix} \text {dof}_{1,1}\left( q_1^\Delta \right)&\quad \cdots&\quad \text {dof}_{1,1}\left( q_{n_p^\Delta }^\Delta \right) \\ \vdots&\quad \ddots&\quad \vdots \\ \text {dof}_{N_K, p}\left( q_1^\Delta \right)&\quad \cdots&\quad \text {dof}_{N_K, p}\left( q_{n_p^\Delta }^\Delta \right) \end{bmatrix} \in \mathbb R^{N_Kp \times n_p^\Delta }. \end{aligned}$$

Let \(\varvec{\Pi }\) be the matrix representation of the operator \(\Pi ^{\nabla ,K}_p\) seen now as a map from \(V^\Delta (K)\) into \(V^\Delta (K)\supseteq \mathbb H_p(K)\). Then, following [16], it is possible to show that

$$\begin{aligned} \varvec{\Pi }= \varvec{D} \varvec{G}^{-1} \varvec{B} \in \mathbb R^{N_K p \times N_K p}. \end{aligned}$$

Next, denoting by \(\widetilde{\varvec{G}} \in \mathbb R^{n_p^\Delta \times n_p^\Delta }\) the matrix coinciding with \(\varvec{G}\) apart from the first row which is set to zero, the matrix representation of the bilinear form in (23) is

$$\begin{aligned} \left( \varvec{\Pi }_*\right) ^T \, \widetilde{\varvec{G}} \,\left( \varvec{\Pi }_*\right) + \left( \varvec{I} - \varvec{\Pi }\right) ^T \, \varvec{S} \, \left( \varvec{I} - \varvec{\Pi }\right) . \end{aligned}$$

Here, \(\varvec{S}\) denotes the matrix representation of an explicit stabilization \(S^K(\cdot ,\cdot )\). For the stabilization defined in (28), we have

$$\begin{aligned}&\varvec{S}((k-1)N_K+ r,(l-1)N_K+s) = \sum _{i=1}^{N_K} \frac{p}{h_{e_i}} \left( \Pi ^{0,e_i}_{p-1}\varphi _{l,s}, \Pi ^{0,e_i}_{p-1}\varphi _{k,r}\right) _{0,e_i}\\&\quad \forall k,l=1,\dots ,N_K, \forall r,s=0,\dots ,p-1. \end{aligned}$$

By expanding \(\Pi ^{0,e_i}_{p-1}\varphi _{l,s}\) and \(\Pi ^{0,e_i}_{p-1}\varphi _{k,r}\) in the basis \(\left\{ m_\gamma ^{e_i} \right\} _{\gamma =0,\ldots ,p-1}\) of \(\mathbb P_{p-1}(e_i)\), i.e.,

$$\begin{aligned}&\Pi ^{0,e_i}_{p-1}\varphi _{l,s} = \sum _{\gamma =0}^{p-1} t_\gamma ^{(l,s),e_i} m_\gamma ^{e_i}, \quad \Pi ^{0,e_i}_{p-1}\varphi _{k,r}= \sum _{\zeta =0}^{p-1}t_\zeta ^{(k,r),{e_i}} m_\zeta ^{e_i}, \nonumber \\&\quad \forall k,l=1,\dots ,N_K,\, \forall r,s=0,\dots ,p-1, \end{aligned}$$
(66)

we can write

$$\begin{aligned} \begin{aligned}&\varvec{S}((k-1)N_K+ r,(l-1)N_K+s) = \sum _{i=1}^{N_K} \sum _{\gamma =0}^{p-1} \sum _{\zeta =0}^{p-1} t_\gamma ^{(l,s),{e_i}} t_\zeta ^{(k,r),{e_i}} \frac{p}{h_{e_i}} \left( m_\gamma ^{e_i}, m_\zeta ^{e_i}\right) _{0,{e_i}}\nonumber \\&\quad \forall k,l=1,\dots ,N_K,\, \forall r,s=0,\dots ,p-1. \end{aligned} \end{aligned}$$

For the basis defined in (63), using the orthogonality of the Legendre polynomials (64), this expression can be simplified leading to a diagonal stability matrix \(\mathbf S \):

$$\begin{aligned} \begin{aligned}&\varvec{S}((k-1)N_K+ r,(k-1)N_K+r)= \sum _{i=1}^{N_K} \sum _{\zeta =0}^{p-1} \frac{p}{2r+1} \left( t_\zeta ^{(k,r),{e_i}}\right) ^2 \nonumber \\&\quad \forall k=1,\dots ,N_K,\, \forall r=0,\dots ,p-1. \end{aligned} \end{aligned}$$

For fixed \(i,k \in \{1,\dots ,N_K\}\) and \(r \in \{0,\dots ,p-1\}\), the coefficients \(t_\zeta ^{(k,r),e_i}\) are obtained by testing \(\Pi ^{0,e_i}_{p-1}\varphi _{k,r}\), defined in (66), with \(m_{\zeta }^{e_i}\), \(\zeta =0,\dots ,p-1\), and by taking into account the definition of \(\Pi ^{0,e_i}_{p-1}\) in (14), the orthogonality relation (64) and the definition of \(\varphi _{k,r}\) in (13). This gives

$$\begin{aligned} t_\zeta ^{(k,r),e_i} = \frac{2 \zeta +1}{h_{e_i}} \left( \varphi _{k,r},m_\zeta ^{e_i}\right) _{0,e_i} = (2 \zeta +1) \delta _{i k} \delta _{r \zeta } \quad \forall \zeta =0,\dots ,p-1. \end{aligned}$$

The global system of linear equations corresponding to method (10) is assembled as in the standard non-conforming FEM. Finally, one imposes in a non-conforming fashion the Dirichlet boundary datum \(g\) by

$$\begin{aligned} \int _eu_nq^e_{p-1}\, d s= \int _egq^e_{p-1}\, d s\quad \forall q^e_{p-1}\in \mathbb P_{p-1}(e), \end{aligned}$$

where, in practice, g is replaced by \(g_p\), see Remark 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascotto, L., Perugia, I. & Pichler, A. Non-conforming Harmonic Virtual Element Method: \(h\)- and \(p\)-Versions. J Sci Comput 77, 1874–1908 (2018). https://doi.org/10.1007/s10915-018-0797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0797-4

Keywords

Mathematics Subject Classification

Navigation