Skip to main content
Log in

Adaptive Modal Filters Based on Artificial and Spectral Viscosity Techniques

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we adapt techniques of artificial and spectral viscosities [especially those presented in Klöckner et al. (Math Model Nat Phenom 6(03):57–83, 2011) and Tadmor and Waagan (SIAM J Sci Comput 34(2):A993–A1009, 2012)] to develop adaptive modal filters for Legendre polynomial bases and demonstrate their application in a shock-capturing discontinuous Galerkin method. While traditional artificial viscosities can impose additional stability restrictions on the time step size, we show that our filtering methods can achieve a similar shock-capturing capability without additional restriction of the time step size. We further demonstrate that the accuracy of the artificial viscosity filter can be significantly improved upon with a hybrid spectral viscosity-artifical viscosity filter, which we also develop and demonstrate. We show that we can achieve computational efficiency with an analytical time integration technique similar to one presented in Moura et al. (Diffusion-based limiters for discontinuous galerkin methods-part I: one-dimensional equations, 2013). We consider several 1D numerical examples for the linear advection, scalar wave, Burgers’, and Euler equations to demonstrate the accuracy and uniform stability of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atkins, H.L., Pampell, A.: Robust and accurate shock capturing method for high-order discontinuous galerkin methods. In: 20th AIAA Computaional Fluid Dynamics Conference (2011)

  2. Atkins, H.L., Shu, C.W.: Quadrature-free implementation of discontinuous galerkin method for hyperbolic equations. AIAA J. 36(5), 775–782 (1998)

    Article  Google Scholar 

  3. Barter, G.E., Darmofal, D.L.: Shock capturing with pde-based artificial viscosity for dgfem: part i. formulation. J.Comput. Phys. 229(5), 1810–1827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J. Comput. Phys. 131(2), 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572. http://www.sciencedirect.com/science/article/pii/S0021999196955722

  5. Boyd, J.P.: Hyperviscous shock layers and diffusion zones: monotonicity, spectral viscosity, and pseudospectral methods for very high order differential equations. J. Sci. Comput. 9(1), 81–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, J.P.: Trouble with gegenbauer reconstruction for defeating gibbs phenomenon: Runge phenomenon in the diagonal limit of gegenbauer polynomial approximations. J. Comput. Phys. 204(1), 253–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P.: The Legendre-Burgers equation: when artificial dissipation fails. Appl. Math. Comput. 217, 1949–1964 (2010). https://doi.org/10.1016/j.amc.2010.06.051

    Article  MathSciNet  MATH  Google Scholar 

  8. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992). https://doi.org/10.1137/0729012

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods, pp. 3–50. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.W.: The local discontinuous galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712

    Article  MathSciNet  MATH  Google Scholar 

  11. Favors, J.: A comparison of artificial viscosity sensors for the discontinuous galerkin method. Ph.D. thesis, Auburn University (2013)

  12. Gelb, A., Tadmor, E.: Detection of edges in spectral data ii. nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelb, A., Tadmor, E.: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math. 33(1), 3–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the gibbs phenomenon. Appl. Comput. Harmon. Anal. 20(1), 3–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottlieb, D., Shu, C.W.: On the gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, By, Ma, Hp, Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4), 1254–1268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hesthaven, J., Kirby, R.: Filtering in legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaber, S.O.: A legendre pseudospectral viscosity method. J. Comput. Phys. 128(1), 165–180 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karamanos, G., Karniadakis, G.E.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirby, R.M., Sherwin, S.J.: Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling. Comput. Methods Appl. Mech. Eng. 195(23), 3128–3144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klöckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous galerkin method. Math. Model. Nat. Phenom. 6(03), 57–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krivodonova, L.: Limiters for high-order discontinuous galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007). https://doi.org/10.1016/j.jcp.2007.05.011. http://www.sciencedirect.com/science/article/pii/S0021999107002136

  25. Ma, X., Symeonidis, V., Karniadakis, G.: A spectral vanishing viscosity method for stabilizing viscoelastic flows. J. Non Newton. Fluid Mech. 115(2), 125–155 (2003)

    Article  MATH  Google Scholar 

  26. Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meister, A., Ortleb, S., Sonar, T.: Application of spectral filtering to discontinuous galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. 28(6), 1840–1868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Michoski, C., Dawson, C., Kubatko, E., Wirasaet, D., Brus, S., Westerink, J.: A comparison of artificial viscosity, limiters, and filters, for high order discontinuous galerkin solutions in nonlinear settings. J. Sci. Comput. 66(1), 406–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). https://doi.org/10.1137/S00361445024180

    Article  MathSciNet  MATH  Google Scholar 

  30. Moura, R.C., Affonso, R.C., da Silva, A.F.d.C., Ortega, M.A.: Diffusion-based limiters for discontinuous galerkin methods-part I: one-dimensional equations. In: 22nd International Congress of Mechanical Engineering, 3–7 November 2013. Ribeirão Preto, SP, Brazil (2013)

  31. Peraire, J., Persson, P.O.: The compact discontinuous galerkin (cdg) method for elliptic problems. SIAM Jo. Sci. Comput. 30(4), 1806–1824 (2008). https://doi.org/10.1137/070685518

    Article  MathSciNet  MATH  Google Scholar 

  32. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  33. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous galerkin methods. AIAA Pap. 112, 2006 (2006)

    Google Scholar 

  34. Qiu, J., Shu, C.W.: Hermite weno schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004). https://doi.org/10.1016/j.jcp.2003.07.026. http://www.sciencedirect.com/science/article/pii/S0021999103004212

  35. Qiu, J., Shu, C.W.: A comparison of troubled-cell indicators for runge-kutta discontinuous galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Silverman, R., Lebedev, N.: Special Functions and their Applications. Courier Corporation, North Chelmsford (1972)

    Google Scholar 

  37. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989). https://doi.org/10.1137/0726003

    Article  MathSciNet  MATH  Google Scholar 

  38. Tadmor, E.: Filters, mollifiers and the computation of the gibbs phenomenon. Acta Numer. 16, 305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tadmor, E., Waagan, K.: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the hll-riemann solver. Shock Waves 4(1), 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  41. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vincent, P.E., Jameson, A.: Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists. Math. Model. Nat. Phenom. 6(3), 97–140 (2011). https://doi.org/10.1051/mmnp/20116305

    Article  MathSciNet  MATH  Google Scholar 

  43. Vuik, M.J., Ryan, J.K.: Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38(1), A84–A104 (2016). https://doi.org/10.1137/15M1018393

    Article  MathSciNet  MATH  Google Scholar 

  44. Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’84., vol. 9, pp. 150–153 (1984). https://doi.org/10.1109/ICASSP.1984.1172729

  45. Wolf, E., Schrock, C., Benek, J.: Accurate and efficient quadrature-free computation with a modal taylor series method (in preparation) (2018)

  46. Wukie, N.A., Orkwis, P.D.: A implicit, discontinuous Galerkin Chimera solver using automatic differentiation. Am. Inst. Aeronaut. Astronaut. (2016). https://doi.org/10.2514/6.2016-2054

    Article  Google Scholar 

  47. Xu, C., Pasquetti, R.: Stabilized spectral element computations of high reynolds number incompressible flows. J. Comput. Phys. 196(2), 680–704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space–time adaptive ader discontinuous galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118(Supplement C), 204 – 224 (2015). https://doi.org/10.1016/j.compfluid.2015.06.020. http://www.sciencedirect.com/science/article/pii/S0045793015002030

  49. Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zingan, V.N.: Discontinuous galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization. Ph.D. thesis, Texas A&M University (2012)

  51. Zudrop, J., Hesthaven, J.S.: Accuracy of high order and spectral methods for hyperbolic conservation laws with discontinuous solutions. SIAM J. Numer. Anal. 53(4), 1857–1875 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, E.M., Schrock, C.R. Adaptive Modal Filters Based on Artificial and Spectral Viscosity Techniques. J Sci Comput 78, 1132–1151 (2019). https://doi.org/10.1007/s10915-018-0798-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0798-3

Keywords