Abstract
In this work, we adapt techniques of artificial and spectral viscosities [especially those presented in Klöckner et al. (Math Model Nat Phenom 6(03):57–83, 2011) and Tadmor and Waagan (SIAM J Sci Comput 34(2):A993–A1009, 2012)] to develop adaptive modal filters for Legendre polynomial bases and demonstrate their application in a shock-capturing discontinuous Galerkin method. While traditional artificial viscosities can impose additional stability restrictions on the time step size, we show that our filtering methods can achieve a similar shock-capturing capability without additional restriction of the time step size. We further demonstrate that the accuracy of the artificial viscosity filter can be significantly improved upon with a hybrid spectral viscosity-artifical viscosity filter, which we also develop and demonstrate. We show that we can achieve computational efficiency with an analytical time integration technique similar to one presented in Moura et al. (Diffusion-based limiters for discontinuous galerkin methods-part I: one-dimensional equations, 2013). We consider several 1D numerical examples for the linear advection, scalar wave, Burgers’, and Euler equations to demonstrate the accuracy and uniform stability of our methods.





Similar content being viewed by others
References
Atkins, H.L., Pampell, A.: Robust and accurate shock capturing method for high-order discontinuous galerkin methods. In: 20th AIAA Computaional Fluid Dynamics Conference (2011)
Atkins, H.L., Shu, C.W.: Quadrature-free implementation of discontinuous galerkin method for hyperbolic equations. AIAA J. 36(5), 775–782 (1998)
Barter, G.E., Darmofal, D.L.: Shock capturing with pde-based artificial viscosity for dgfem: part i. formulation. J.Comput. Phys. 229(5), 1810–1827 (2010)
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J. Comput. Phys. 131(2), 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572. http://www.sciencedirect.com/science/article/pii/S0021999196955722
Boyd, J.P.: Hyperviscous shock layers and diffusion zones: monotonicity, spectral viscosity, and pseudospectral methods for very high order differential equations. J. Sci. Comput. 9(1), 81–106 (1994)
Boyd, J.P.: Trouble with gegenbauer reconstruction for defeating gibbs phenomenon: Runge phenomenon in the diagonal limit of gegenbauer polynomial approximations. J. Comput. Phys. 204(1), 253–264 (2005)
Boyd, J.P.: The Legendre-Burgers equation: when artificial dissipation fails. Appl. Math. Comput. 217, 1949–1964 (2010). https://doi.org/10.1016/j.amc.2010.06.051
Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992). https://doi.org/10.1137/0729012
Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods, pp. 3–50. Springer, Berlin (2000)
Cockburn, B., Shu, C.W.: The local discontinuous galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712
Favors, J.: A comparison of artificial viscosity sensors for the discontinuous galerkin method. Ph.D. thesis, Auburn University (2013)
Gelb, A., Tadmor, E.: Detection of edges in spectral data ii. nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)
Gelb, A., Tadmor, E.: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math. 33(1), 3–21 (2000)
Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the gibbs phenomenon. Appl. Comput. Harmon. Anal. 20(1), 3–25 (2006)
Gottlieb, D., Shu, C.W.: On the gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)
Guo, By, Ma, Hp, Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4), 1254–1268 (2001)
Hesthaven, J., Kirby, R.: Filtering in legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)
Kaber, S.O.: A legendre pseudospectral viscosity method. J. Comput. Phys. 128(1), 165–180 (1996)
Karamanos, G., Karniadakis, G.E.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)
Kirby, R.M., Sherwin, S.J.: Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling. Comput. Methods Appl. Mech. Eng. 195(23), 3128–3144 (2006)
Klöckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous galerkin method. Math. Model. Nat. Phenom. 6(03), 57–83 (2011)
Krivodonova, L.: Limiters for high-order discontinuous galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007). https://doi.org/10.1016/j.jcp.2007.05.011. http://www.sciencedirect.com/science/article/pii/S0021999107002136
Ma, X., Symeonidis, V., Karniadakis, G.: A spectral vanishing viscosity method for stabilizing viscoelastic flows. J. Non Newton. Fluid Mech. 115(2), 125–155 (2003)
Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)
Meister, A., Ortleb, S., Sonar, T.: Application of spectral filtering to discontinuous galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. 28(6), 1840–1868 (2012)
Michoski, C., Dawson, C., Kubatko, E., Wirasaet, D., Brus, S., Westerink, J.: A comparison of artificial viscosity, limiters, and filters, for high order discontinuous galerkin solutions in nonlinear settings. J. Sci. Comput. 66(1), 406–434 (2016)
Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). https://doi.org/10.1137/S00361445024180
Moura, R.C., Affonso, R.C., da Silva, A.F.d.C., Ortega, M.A.: Diffusion-based limiters for discontinuous galerkin methods-part I: one-dimensional equations. In: 22nd International Congress of Mechanical Engineering, 3–7 November 2013. Ribeirão Preto, SP, Brazil (2013)
Peraire, J., Persson, P.O.: The compact discontinuous galerkin (cdg) method for elliptic problems. SIAM Jo. Sci. Comput. 30(4), 1806–1824 (2008). https://doi.org/10.1137/070685518
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205
Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous galerkin methods. AIAA Pap. 112, 2006 (2006)
Qiu, J., Shu, C.W.: Hermite weno schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004). https://doi.org/10.1016/j.jcp.2003.07.026. http://www.sciencedirect.com/science/article/pii/S0021999103004212
Qiu, J., Shu, C.W.: A comparison of troubled-cell indicators for runge-kutta discontinuous galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005)
Silverman, R., Lebedev, N.: Special Functions and their Applications. Courier Corporation, North Chelmsford (1972)
Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989). https://doi.org/10.1137/0726003
Tadmor, E.: Filters, mollifiers and the computation of the gibbs phenomenon. Acta Numer. 16, 305 (2007)
Tadmor, E., Waagan, K.: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012)
Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the hll-riemann solver. Shock Waves 4(1), 25–34 (1994). https://doi.org/10.1007/BF01414629
Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991)
Vincent, P.E., Jameson, A.: Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists. Math. Model. Nat. Phenom. 6(3), 97–140 (2011). https://doi.org/10.1051/mmnp/20116305
Vuik, M.J., Ryan, J.K.: Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38(1), A84–A104 (2016). https://doi.org/10.1137/15M1018393
Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’84., vol. 9, pp. 150–153 (1984). https://doi.org/10.1109/ICASSP.1984.1172729
Wolf, E., Schrock, C., Benek, J.: Accurate and efficient quadrature-free computation with a modal taylor series method (in preparation) (2018)
Wukie, N.A., Orkwis, P.D.: A implicit, discontinuous Galerkin Chimera solver using automatic differentiation. Am. Inst. Aeronaut. Astronaut. (2016). https://doi.org/10.2514/6.2016-2054
Xu, C., Pasquetti, R.: Stabilized spectral element computations of high reynolds number incompressible flows. J. Comput. Phys. 196(2), 680–704 (2004)
Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space–time adaptive ader discontinuous galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118(Supplement C), 204 – 224 (2015). https://doi.org/10.1016/j.compfluid.2015.06.020. http://www.sciencedirect.com/science/article/pii/S0045793015002030
Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013)
Zingan, V.N.: Discontinuous galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization. Ph.D. thesis, Texas A&M University (2012)
Zudrop, J., Hesthaven, J.S.: Accuracy of high order and spectral methods for hyperbolic conservation laws with discontinuous solutions. SIAM J. Numer. Anal. 53(4), 1857–1875 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wolf, E.M., Schrock, C.R. Adaptive Modal Filters Based on Artificial and Spectral Viscosity Techniques. J Sci Comput 78, 1132–1151 (2019). https://doi.org/10.1007/s10915-018-0798-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0798-3